smart contracts

spending the bitcoins of a utxo:
the easy story

* this is similar to a challenge response protocol

* txin of a transaction tx provides...

— public key whose hash should match the address In
txout

— signature of a string X

« XIs a string derived from...
— tX where signatures are omitted
— the destination address contained in referred txout

the reality: the conditions for
unlocking funds can vary

* only one subject can spend

* anyone can spend

* nobody can spend (logging)

* M-of-N subjects should agree to spend

* one subject can spend after a certain
amount of funds are accumulated
(e.g., for croudfunding)

* one (or many) can spend after a certain
time

* efc...

* a combination of the above

bitcoin scripts
locking script (a.k.a. scriptPubKey)
— associated with txout
— states conditions to spend the output (a “question™)
 usually it specifies at least the (hash of) a public key
unlocking script (a.k.a. scriptSig)
— associated with txin

— should «match» the conditions of the corresponding
txout (the “answer”)

 usually it contains a signature
the output of the unlocking script (answer) is
used as input for the locking script (question)

— essentially: (1) exec the unlocking script (2) keep the
stack and exec the locking script (3) success if top of
the stack is not zero and no operation failed

executed as part of consensus checks

the bitcoin scripting language

proprietary

simple

stack-based

no state

same execution on all nodes

no iteration instructions
— Turing incomplete

the bitcoin scripting language

* read and executed from left to right

* constants push themselves onto the stack

« arithmetic: ADD, SUB, ...

 stack: DUP, DROP, ROT, 2DUP, ...

 flow: IF, ELSE, ENDIF, VERIFY, RETURN, ...

. crypto: HASH160, SHA1, CHECKSIG,
CHECKMULTISIG ...

» time: CHECKLOCKTIME,

https://en.bitcoin.it/wiki/Script

examples
anyone-can-spend
unlock: (empty)
lock: TRUE

provably-unspendable, just to store data
lock: RETURN <data max 80 bytes> (never considered an UTXO for efficiency)

pay-to-public-key-hash (p2pkH, the “standard” one)

unlock: <sig> <pubKey>
lock: DUP HASH160 <pubKeyHash> EQUALVERIFY CHECKSIG

A or B can spend

unlock for A: <sig> <ApubKey> <1>

unlock for B: <sig> <BpubKey> <0>

lock: IF DUP HASH160 <ApubKeyHash>
ELSE DUP HASH160 <BpubKeyHash> ENDIF
EQUALVERIFY CHECKSIG

freezing funds until a time in the future

unlock: <sig> <pubKey>
lock: <expiry time> CHECKLOCKTIMEVERIFY DROP
DUP HASH160 <pubKeyHash> EQUALVERIFY CHECKSIG

smart contracts

« each one of these scripts is called smart contract
— itis not a “legal contract’, it is just a script!

— they may realize/support legal contracts

it might be recognized as a contract, if parties agree that
“‘code is law’, since the execution is checked by consensus

* but in Italy they do are recognized as legal contracts by
Legge 11 feb. 2019 n.12

* enable to use the bhitcoin blockchain for other
PUrPOSeES:

— colored coins

* tokens, that are distinct from bitcoin, whose transactions are
recorded in the bitcoin blockchain

» obsoleted by the rising of the transaction fees
— record of transaction for generic assets

— settlement of off-chain transactions
» S0 called “payment channels”, see the Lightning Network

bitcoin for smart contracts: limits

* high fees

* limited expressiveness
— Turing incomplete

* slow

 the blockchain records any “state change”
— unhandy for software execution

Ethereum

 Ethereum is a DLT targeted to smart contracts

__________|Bitcon ________|Ethereum

Turing
completeness

persistent values not supported, complex,
just UTXO, usually need

for scripts

blockchain
contains

language

block time
consensus
block size limit

NO

external code
just transactions

simple stack based
10 minutes

PoW
1MB

YES

contracts accounts can store
variables, easy to retrieve

current status

high level language compiled
to a bytecode for the Ethereum
Virtual Machine

20 seconds
PoW->Po0S?
adjusted dynamically, no limit

10

accounts

* In bitcoin the lock script states what should
be provided to unlock funds

— It Is a feature of every UTXO
— some standard scripts (P2PKH, 2-0f-3, etc.)
— potentially infinite kinds of UTXO
» depending on the lock script
* In Ethereum we have just two kinds of
accounts
— Externally Owned Accounts (EOA)
— contract accounts

11

contracts (accounts)

 each contract account is associlated an
software object

— very much like a software object of OOP
* It has a state
— persisted In the blockchain

* It has operations

12

operations

* an operation Is executed within a
transaction
* It can...
— change the state of the object
— take parameters
— return values

» essentially they are the methods of the
object/contract

13

accounts
oA

associated yes no
private keys

balance yes yes

other persistent no yes

values/variables it also stores EVM bytecode

as a transaction e+ cansend ETH « cansend ETH

sender... « can call operationsona < can call operations on
contract another contract

in the same calling
transaction

as a transaction + canreceive ETH e canreceive ETH

recipient... « always executes an
operation (possibly the
fallback one)

14

transactions fields

(sender address)

recipient address

value (exchanged ETH)

data

nonce (increasing, to avoid replay attack)
gas price

gas limit

max fee = gas price * gas limit
— actual fee depends on the executed code

— If a tx runs “out of gas”, state changes are reverted,
but fee is taken anyway

15

contract lifecycle

written in a high-level language
compiled to EVM bytecode
deployed

— transaction sent to special address 0x0 and
bytecode as data

operations are called on the contract

— as part of transactions, which may update Iits
state

cannot be deleted, but the contract can
destruct itself

16

a solidity example

* anyone can withdraw funds from this
contract

1 // Oour first contract is a faucet!
2 contract Faucet {

oo~ oW

11
12
13
14
15
16
17 }

// Give out ether to anyone who asks
function withdraw(uint withdraw_amount) public {

/7 Limit withdrawal amount
require(withdraw_amount <= 100000000000000000) ;

/7 Send the amount to the address that requested it
msg.sender. transfer (withdraw_amount);

}

// Accept any incoming amount
function () public payable {}

17

W =] @ s

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

contract owned {

address owner;

// Contract constructor: set owner
constructor() {

¥

¥

owner = msg.sender;

/7 Access control modifier
modifier onlyOwner {
require(msg.sender == owner,
"Only the contract owner can call this function"),

—F

}

contract mortal is owned {

¥

s/ Contract destructor
function destroy() public onlyOwner {
selfdestruct(owner),

¥

contract Faucet is mortal {

¥

event Withdrawal(address indexed to, uint amount);
event Deposit(address indexed from, uint amount),;

// Give out ether to anyone who asks
function withdraw(uint withdraw_amount) public {
A/ Limit withdrawal amount
require(withdraw_amount <= 0.1 ether);
require(this.balance >= withdraw_amount,
"Insufficient balance in faucet for withdrawal request"),;
s/ Send the amount to the address that requested it
msg.sender. transfer(withdraw_amount),
emit withdrawal(msg.sender, withdraw_amount);
i?’Accept any incoming amount
function () public payable {
emit Deposit(msg.sender, msg.value);

¥

evolution

state variables
constructors
Inheritance

custom
modifiers

assertions
events

18

simple things might be complex

» for example, requiring a multisignature to
unlock funds

19

libraries

* |libraries can be imported in a project as
iIncluded code...

« _..or from the blockchain!
— ...if you trust it!

20

remix
e a basic web based editor, emulator,
debugger

* https://remix.ethereum.org

@ & Untitled2 > 4 v a w v ? 9
1 pragma solidity 10.4.8;
2 Solidity version: 0.4.8+commit.60cc1668.Emscripten.clang
3- contract Hello { Change to: 0.4.10-nightly.2017.3.3+commit.6bEdBILE |
4)) Text Wrap Enable Optimization 3 Auto Compile % Compile
5 // A string variable
6 string public greeting;
7 Attach Transact Transact (Payable) Call
8 // Events tP_mt gets lcggeq on the b}ockcham + Hello 1403 bytes
9 event GreetingChanged(string _greeting);
10 At Address Create string Q
11 // The function with the same name as the class is a constructor
12 -~ function Hellc{str‘ing gr‘eeting) { Bytecode 60606040523481000057604051610570380380610570833981016040528
ii 3 greeting = _greeting; Interface [{"constant"false,"inputs":[{"name":"_greeting","type":"string"},'name":"set
15 WWeb3 deploy var _greeting = /* var of type string here */ ;
16 // Change the greeting message var helloContract = web3.eth.contract([{"constant":fal
iy’ function setGreeting(string _greeting) { var hello = helloContract.new(
18 greeting = _greeting; _greeting,
o {F b3.eth [el
Iy : rom: wel .eth.accounts ’
g é’/ L:g azheven’; that Ehe grjeetmg message has been updated data: '@x6060604052346100005760485161057b38038061
reetingChanged(_greeting); gas: '4700000"
o } }, function (e, contract){
23 console.log(e, contract);
24 // Get the greeting message if (typeof contract.address !== 'undefined') {
25~ function greet() constant returns (string _greeting) { console.log('Contract mined! address: ' + con
26 _greeting = greeting; 3
27 1 b
28 }
29
Metadata location bzzr://a63¢0b3440ebe3923ddag3af6611 38c1aei26f4a1d3a51f6cAf 163260
Toggle Details

21

contracts security

 contracts are usually not very long
* Writing contracts Is easy

* Writing secure contracts is difficult
— solidity/EVM semantic may be subtle
— mistakes may cost a lot of money!

Atzei N. et al. A survey of attacks on ethereum smart contracts.

International Conference on Principles of Security and Trust 2017

22

references

* A. M. Antonopoulos — Mastering Bitcoin

* A. M. Antonopoulos, G. Wood - Mastering
Ethereum

23

cewoJiun — Alun2asi1agAo —eluozzid oizunew 6T0Z-8T02 ®

