
©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

1

authenticated data structures

B. Palazzi contributed to early versions of these slides. All mistakes are mine.

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

Authenticated Data Structure
(ADS)

• an ADS is a data structure that is “easy” to
check for integrity, even for parts of it

• basics

– collects elements

– associates a cryptographic hash h with its content
• h is called root hash or basis

• value of h ↔ content of the ADS

• integrity verification

– queries: come with a proof that can be checked
against h

– updates: update h

2

h

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

typical use cases

• by using an ADS, a client can detect small
tampering in large data set, efficiently

• typical applications
– legal

• “legal” proof of correctness or tampering of storage

• service level agreement verification

– backup check

– cloud

– cryptocurrencies

3

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

cloud storage example

• cloud based storage

– virtually unlimited, cheap, untrusted

• local storage

– limited, expensive, trusted

– e.g. IoT device, mobile, your PC

• store a large dataset on the cloud and just h
locally

• equip the dataset with an ADS

– query results, with their proof, are checked against
trusted h

– updates change remote dataset, remote ADS and
local h

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

(some) ADS quality metrics

• as for regular data structures
– time complexity for queries

– time complexity for updates

– space overhead

• plus...
– time complexity for proof construction

– time complexity for proof check

– space complexity for proof

5

h

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

a very simple ADS:
authenticated list

• a linked list plus...

• ... each element contain a field h
h = hash(info | prev.h)

• each h is a crypt. hash of current info and
all previous info

6

h

info

h

info

h

info

h

info

h

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

authenticated list: (in)efficiency

• append an element O(1)

• update of info of a generic element O(n)
– n is the number of elements

– this is not O(1), all following hashes should be
updated!

• query O(n)

• proof space O(n), time O(n)
– it is made of previous h and all subsequent

info

• closely related with Bitcoin blockchain
– where append is the most important operation

7

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

other ADSes

• Merkle Hash Tree (MHT)
– a.k.a Merkle Tree or Hash Tree

• authenticated skip list

• static or dynamic
– e.g. for backup check a static data structure is

ok

– MHT are mostly used in their static flavor

• deterministic or randomized
– skip list are typically randomized

8

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: how does it work
• a (balanced binary) tree

• each node v contains a hash of the data
associated with leaves of the subtree rooted at v

v1,1 v1,0

v2,0 v2,2 v2,3 v2,1

m1 m2 m3 m4

h

data must be ordered

h(.) is a cryptographic hash function

V2,2 = h(m3) V2,3 = h(m4)

V1,1 = h(V2,2 | V2,3)

root hash= V0,0 = h(V1,0 | V1,1)
v0,0

9

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification

• proof for mi:

– consider the path p from mi to root (excluded)

– the proof is made of “steps”, one for each node v of p

– each step is a pair
• label Left or Right depending on how parent of v is entered

• (hash in the) sibling of v

• example: m2

– p = v2,1 v1,0

– proof
• R v2,0

• L v1,1

v1,1 v1,0

v2,0 v2,2 v2,3 v2,1

m1 m2 m3 m4

root hash RH = v0,0

10

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification

• suppose that verifier has a trusted version of the
root hash: tRH

• procedure for integrity check

– from proof re-compute RH,
in the example
RH = h(h(v2,0 |h(m2)) | v1,1)

– compare
RH == tRH

v1,1 v1,0

v2,0 v2,2 v2,3 v2,1

m1 m2 m3 m4

RH = v0,0

11

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification
semantic

• client is sure that the data of the reply
comes from the dataset associated with
the trusted version of the root hash

12

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification

• correctness (no false positives)
– client reconstructs part of the MHT

• security (no false negatives)
– i.e., tampering of data or MHT, but same RH

– means that attacker has found a collision for
the cryptographic hash

13

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: efficiency

• for a balanced MHT creating and checking
a proof is efficient

• length of the proof is O(log n)
– n: size of the stored data

14

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification
(for empty result)

• proving absence is equivalent to proving
two elements are consecutive
– for ordered sets

• consider proofs for m and m’ (m < m’)

• m and m’ are consecutive iff the label
sequences of their proofs satisfy the
following system of regular expressions
– labels of proof of m = xLz

labels of proof of m’ = yRz
x = R*
y = L*

– for perfectly balanced trees |x|=|y|, z possibly
empty 15

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification
(for empty result)

• check:
– isolate common part in the two poofs (z)

– check label sequences for the non common
part of the paths (should be R*L and L*R)

• example: prove that m2 m3 are consecutive

– common path empty
• just the root is common

– proof for m2
RL

– proof for m3
LR

v1,1 v1,0

v2,0 v2,2 v2,3 v2,1

m1 m2 m3 m4

RH = v0,0

16

f

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: query verification
(for empty result)

correctness and security derive from...

• correctness and security of proofs of m
and m’

• correspondence between structure of the
tree and the regular expressions

17

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: update

• we have to update m to a new version m’
– root hash will change as well as several internal

hashes

• procedure on the trusted side (e.g. client)

– get proof p for m and check it

– compute the new hashes of the path to the root
following p substituting m’ in place of m

– the lastly computed hash is the new trusted root hash

• procedure on the untrusted side (e.g. server)

– update the hashes of the path to the root substituting
m’ in place of m

18

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

MHT: update

• example: update m2 to a new version m2’

• O(log n) time for balanced trees

v1,1 v1,0

v2,0 v2,2 v2,3 v2,1

m1 m2 m3 m4

v0,0

updated
from proof

19

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

an ADS use case: check for
malicious cloud server

• client stores root hash locally

• ADS can be stored in cloud

• ADS can be applied to regular cloud storage

– i.e., storage might not know about ADS

– ADS should be properly represented in the storage

Storage
Server

Client
Application

ADS

answer
+

integrity
proof

query/update

38664e34f94365882791e78

untrusted

root hash
tRH

trusted

20

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

ADS authenticated query
protocol

ADS
storage client Storage

AUTH_query(x)

Proof: h1..hK result

regular query(x)

h1==H(result) ?

HashChain(Proof) ==
tRH?

tRH

21

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

ADS authenticated update
protocol

update ADS insert x

Update
local tRH

ADS
storage client

data
storage

query ADS x

Proof

tRH

22

©
 2

0
1

7
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
 s

ic
u
re

z
z
a

 d
e

i
s
is

te
m

i
in

fo
rm

a
ti
c
i
e

 d
e

lle
 r

e
ti

security remarks

• tampering with the ADS cannot lead to
undetected data tampering

• if an ADS is lost, it could be re-created
from data

• caveat: usually root hash depends not only
by data but also from ADS internal
structure (e.g. tree balancing)

23

