
1

Authenticated Data Structures
and

Online services

15 Gennaio 2009

Bernardo Palazzi

DIA – Roma Tre University, IT

1

2

Objective
A survey on authenticated data
structure.
A general method for dynamically
maintaining authenticated relational
tables by using authenticated data
structures.
A proof of concept application to online
storage service using:
 Amazon S3 and EC2

2

3

Authenticating a data set

+2,09%3,9IBM
Var%LastCompany

+1,16%4,54Unisys

+1,41%3,95Toshiba
+1,48%3,78Oracle
+1,57%5,43Microsoft

An initial approach towards verifying the
authenticity of the data might be to put a signature
on each t-uple of each relational table of the
database.
This technique does not provide enough security.
An adversary could remove some t-uples and the
user would not have any evidence of this.

4

A straightforward solution

Another straightforward possibility
would be to sign each table as a whole.
Unfortunately, this solution does not
scale-up, and even mid-size tables
would be impossible to be dynamically
authenticated.

3

Hash Function
A hash function h maps a plaintext x to a fixed-length
value x = h(P) called hash value or digest of P
 A collision is a pair of plaintexts P and Q that map to the

same hash value, h(P) = h(Q)
 Collisions are unavoidable
 For efficiency, the computation of the hash function should

take time proportional to the length of the input plaintext
Hash table
 Search data structure based on storing items in locations

associated with their hash value
 Chaining or open addressing deal with collisions
 Domain of hash values proportional to the expected number

of items to be stored
 The hash function should spread plaintexts uniformly over

the possible hash values to achieve constant expected
search time

5

Cryptographic Hash Function
 Preimage resistance (one-way)

 Given hash value x, hard to find
plaintext P such that h(P) = x

 Second preimage resistance
(weak collision resistance)
 Hard to find pair of plaintexts P

and Q such that h(Q) = h(P)

 Collision resistance (strong
collision resistance)
 Given plaintext P, hard to find

plaintext Q such that h(Q) = h(P)

 Collision resistance implies
second preimage resistance

 Domain of hash values should be
large to prevent exhaustive
search

 Random oracle: theoretical
model for a cryptographic hash
function from a finite input
domain P to a finite output
domain X
 Pick randomly and uniformly a

function h: P X over all possible
such functions

 Provide only oracle access to h, that
is, one can obtain hash values for
given plaintexts, but no other
information about the function

6

4

Hash Chain
Repeated application of a preimage resistant hash
function h starting from a random value r
 xn = r
 xi = h(xi 1) for i = n1 … 1

Sequence x1 x2 … xn is pseudo-random
Applications
 one-time passwords
 incremental micropayments (PayWord)

7

x2 x3 x4 x5 x5x1

hash

reveal

Validation Chain
Validation chain over a sequence of plaintexts
p1, p2 , …, pn
 xn1= 0
 xi = h(pi || xi1) for i = n … 1

Incremental stream authentication [Gennaro Rohatgi]
 transmit signed x1
 transmit packets (p1, x2), (p2, x3), …, (pn1, xn), (pn, xn1)
 each packet contains the hash of the next packet
 the integrity of the first hash implies the integrity of the rest
 any prefix of the stream is signed and cannot be repudiated
 constant overhead (one hash per plaintext)
 one signature (slow), n hash computations (fast)
 off-line method, requires reliable transmission

8

p1, x2 p2, x3 p3, x4 p4, x5 p5, 0sig, x1

5

9

Hash Tree (Merkle): building

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

H

Authentication structure
Basis: authenticated tree root

data must be ordered
H is a Hash function

V2,2 = H(m3) V2,3 = H(m4)

V1,1 = H [(V2,2) || (V2,3)]

Basis = V0,0 = H [(V1,0) || (V1,1)]
Data hash

v0,0

10

Hash Tree (Merkle): test
A user would verify data authenticity of

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

v0,0

Authenticated answer is made by: m3, V2,3, V1,0

And from the Basis signed by a CA.

The user can verify if m3 is authentic:

m3HV2,2 =

H

V2,3V2,2 ||H ()V1,1 =

V1,1V1,0 ||H ()

If Basis == V0,0 then m3 is authentic

m3

V0,0 =

6

Stream Authentication with Packet Losses

Sequence of plaintexts to be transmitted
p1, p2 , …, pn

Build a hash tree on top of items (i, pi)
Transmit the signed root hash
For each item pi, transmit packet

(i, pi, proof(i,pi))
Logarithmic space overhead and verification time per packet
Lost packets do not prevent authentication of future packets
Off-line scheme

11

12

Data Outsourcing Models
Two –party model:
 Client issues

queries and
updates

 Responder stores
data structure

update
Client

D
query

answer

Three-party model:
 Source issues

updates
 Source and

responder store
data structure

 Client issues
queries

update
Source

D D

query

answer

Responder

ClientResponder

7

Two-Party Example

 Remote file system

13

Amazon Simple
Storage Service

(S3)

Query
Upload

Download

ClientResponder

14

Three-Party Example

NYSE

Source Client

Wall Street
Journal

Yahoo!
Finance

Stock
symbol

Update

Stock
price

 Dissemination of stock quotes by financial portals
 Content delivery network (e.g., Akamai)

Responder

8

Security Problems

Authentication
 Integrity: is the item

retrieved the same as
the one inserted?

 Soundness: was an item
in the answer previously
deleted?

 Completeness: is there
a missing item in the
answer?

Confidentiality
 Does the responder see

the data?
 Does an eavesdropper

see the data?
 Standard encryption

techniques can be used
 Not addressed in this

talk

15

16

Authenticated Data Structure
 Update includes basis (signed statements)
 Answer includes basis (forwarded from source) and

proof (computed by responder)
 Client verifies answer using proof and relying on basis
 Regular updates and timestamp to avoid replay attacks
 A polynomial-time responder cannot find an incorrect

answer and a proof for it that passes verification

update
basis

Source

D D

query

answer
proof
basis

ClientResponder

9

17

Benefits and Applications
Applications
 Investing

 Data: stock quotes
 Source: NASDAQ, NYSE

 Credit Cards
 Data: valid card numbers
 Source: Visa, AmEx

 Public Key Infrastructure
 Data: Web server certificates
 Source: Verisign, Entrust

 Intrusion Detection
 Data: fingerprints of OS files
 Source: Microsoft, Sun

Benefits
 Centralized trust:

 Users trust only the
source

 Distributed service
 Responders serve as

authentication caches on
the network

 Low deployment cost
 Responders do not need

secure installations
 Resiliency to denial-of-

service attacks
 The source does not

answer queries

18

Cost Parameters
 Time

 Update time (source and
responder)

 Query time (responder)
 Verification time (user)

 Space
 Basis size (sent by source

to responder)
 Proofs size (sent by

responder to user)

update
basis

Source

D D

query

answer
proof
basis

ClientResponder

10

19

Signed Responses
 Dictionary data

structure
 Basis contains of

triples (x, x, t) for
each pair (x, x) of
consecutive items

 Responder forwards
appropriate signed
statement to user

Basis
Size

Query
Time

Proof
Size

Verification
Time

Signed responses n 1 1 1

Source

(2, 3, 5)

update
Responder

(2, 3, 5)

find(4)
User

(-,2, t)
(2,3, t)
(3,5, t)
(5,+, t) (3,5, t)

20

Signed Digest
 d h(S): digest of

dictionary S
computed with a
cryptographic
hash function

 Basis: (d,t)
 User recomputes

digest d from S
for verification

update
Source Responder Client

S S

S

Basis
Size

Query
Time

Proof
Size

Verification
Time

Signed digest 1 1 n n

find(x)

(h(S),t)

(h(S),t)

11

21

Algorithms and Data Structures
ADS - authenticated data structures:

 Merkle Hash Tree
(R. C. Merkle; A Certified Digital Signature; Crypto ‘89)

 Authenticated Skip List
(M. Goodrich, R. Tamassia; Efficient Authenticated
Dictionaries with Skip Lists and Commutative Hashing; T. R.
John Hopkins Information 2000)

These techniques obtain the same security level
of the standard cryptographic hash function
used (e. g. sha-1, sha-256, …)

22

Hash Tree Complexity
 To support

updates, hash over
a balanced search
tree T

 An insertion or
deletion causes the
recomputation of
the hash values on
a leaf-to-root path

 [Naor Nissim]

update
Source Responder User

T T

Basis
Size

Query
Time

Proof
Size

Verification
Time

Hash Tree
[Merkle, Naor Nissim]

1 log n log n log n

find(x)

(r,t)

(r,t)

x4x3

y

z

r

12

23

Skip List
A skip list, introduced by Pugh ’89, for a set S of distinct (key, element) items is
a series of lists S0, S1 , … , Sh

 List S0 contains the keys of S in non-decreasing order
 Each list is a subsequence of the previous one, with probability ½

i.e. S0 S1  …  Sh
The search for a key x starts at first position of the top list and
if x  y: we “scan forward” or if x  y: we “drop down”



S0

S1

S2

S3

31

64 31 34 23

56 64 78 31 34 44 12 23 26

E.g. search for x=78 in a skip list

24

Authenticated Skip List

Hierarchical hashing over a directed acyclic graph.
Commutative Hash H(x, y) == H(y, x)
[Goodrich, Tamassia 2000]
For each node v we define label f(v) in terms of the
respective values at nodes w = right(v) and u = down(v).
The arrows denote the flow of authenticated information.

- 109865 + 

S2

S 1

S 0

+ 10

10

10

+ 

+ 

9

9

86

6

6

5

5

-

-

-

13

25

106

10

Authenticated Skip List:
Main Concepts
Basis: signed time-stamped hash of the start node
Proof: hashes of neighbours of nodes on search path
Verification: computation of a hash chain

Basis

- 985 + 

S2

S 1

S 0

10

+ 

+ 

96

6

5-

-

Proof
Verification

The user Verification for element 9 is obtained by
simply hashing the values of the Proof, and
comparing the result with the signed BASIS.

26

Authenticated Skip List Complexity

update
UserSource

SL

Responder

SL

Basis
Size

Query
Time

Proof
Size

Verification
Time

Auth. Skip List
[Goodrich Tamassia]

1 log n log n log n

find(x)

(s,t)

(s,t)s

31 39 55

14

27

Reference Model Overview
This method does not require trust in the db manager or DBMS.
A client application, external to the DBMS, is the source of data.
To manage authentication the client stores only a hash, the basis

Secure storage of tables is possible by the use of novel
techniques to represent hierarchical data structures in relational
tables and special queries that allow an efficient selection of the

authentication information.

DBMS
Server

Client
Application

ADS

answer
& proof

query/update

38664e34f94365882791e78

untrusted

BASIS

trusted

28

Technical Overview
hash

A
B

DB ADS

relational table

Record 1
Record 2
Record …
Record N

1. Start with a relational table in a DB
2. Compute a hash for each record, it is possible to use different

methods:
1. Concatenation of value in all fields

2. Build an ADS for each record to allow the use of projection operator

3. …

C

3. Build an ADS using the hashes

15

29

Technical Overview(2)
hash

A

B

DB ADS

relational table

Record 1
Record 2
Record …
Record N C

4. Store the ADS in a table on
the DB

B
A

C

authentication table

hash (R1)

hash (Rn) 5. Only the basis A will be
shared using Cryptography

and a Timestamp

basis

30

Related Work
A two party model using ADS, where only the client needs to
maintain the proof of validity for his data.
[Goodrich Tamassia 03]
A design of more general ADS with an initial approach to the
authentication of relational database operations and
multidimensional orthogonal range queries.
[Devanbu et al. 01] [Nuckolls et al. 03] [Martel et al. 04]
ADS extension to perform more complex queries. Using
optimizations on interval queries.
[Buldas et al. 02]
A method to authenticate projection queries using different
cryptographic techniques for verifying the completeness of
relational queries. [Pang et al. 05]
Dynamic authenticated structures for outsourced databases.
[Li et al. 06]
A Merkle Hash Tree embedded into a relational table.
[Miklau Suciu 05]

16

31

Coarse vs. Fine grained
We use two different approaches to represent an
authenticated skip list inside a relational table:

 The Coarse-grained approach is probably the most
natural way to represent an authenticated skip list S
inside a relational table S(R). It consists of storing
each element of S inside a specific record of S(R).
 In order to visualize it is effective to think of S in terms of

a “quarter clockwise rotation”.

 Fine-grained approach shifts the attention to smaller
elements of S. It consists of storing each level of an
element of S inside a record of S(R).

32

Authenticated skip list as a
relational table: coarse-grained

- +1613126532

S 2

S 1

S 0

162f(f(10),f(16))136f(f(10),f(13))126f(10,f(12)10

2nullf(f(-),f(2))2nullf(-, f(2))2nullf(-,2)- 

65f(f(3),f(6))52f(3,f(5))3
63f(5,6)5

106f(6,10)105f(6,10)6

f(f(2),f(3))

Hash 1

- 

Prv1

3

Nxt 1

f(f(2),f(10))

Hash 2

- 

Prv 2

103- f(2,3)2

Nxt 2Nxt 0Prv 0Hash 0Key

10

17

33

Authenticated skip list as a
relational table: fine-grained

- +161312106532

S 2

S 1

S 0

f(3,f(5))135203
f(f(3),f(6))126213

2
10
10
3
6
1

parentKey

f(10,f(16))2162210
f(10,f(13))2136110
f(10,f(12))1126010

f(6,10)110506
f(6,10)110316

f(5,6)

Hash

3

parentLvl

6305

prvKey nxtKeyLevelKey

f(6,10)

34

Update
Insertion of an element with key 10

- 126532 +161310

method to select necessary elements
elements to load in memory to perform the update

new elements inserted and updated links

18

35

Using Nested Sets & Skip List

- 109865 +

S2

S 1

S 0

1

2

3 4

5

6 7

89

10

11

12 15 13 14

20 16

17 18

19

21

22

23 24

25

262728

SELECT * FROM skiplist
WHERE (Lft <=17) AND (Rgt >= 18)

A method to store hierarchical data structures inside tables [Celko 03]
Based on adding 2 extra fields (Lft, Rgt) to the relational table.
This technique allows the validation of an element using only one
query to retrieve the entire “root-path” of authentication.
DBMS manages all concurrency problem related to selection queries.

E.g. authenticate 9

36

Experimental Evaluation Set
Data sets for tests have been chosen with a scale from
10,000 to 1,000,000 of elements; randomly sampled
from a set 10 times larger.
All values presented have been computed as average of
the results of 5 different tests.
The elements in each test are a sample, randomly
selected, composed of 1/1,000 of the entire set.
The Hardware features:
 Cpu Intel Centrino duo T2300 (1.66 GHz, 667 FSB);
 RAM 1.5 Gb DDR2, HDD 5,400 rpm Serial ATA.

The Software features:
 Microsoft Windows XP Tablet edition 2005;
 Java v. 1.5, MySql JDBC Connector 5.03, MySql DBMS v.4.1.

Times in milliseconds.
Tests show the clock-wall time.

19

37

TEST: validation
Time to authenticate an element inside a relational table

0

500

1000

1500

2000

2500

3000

10k 100k 1000k Set

ms

Coarse Fine
Logarithmic scale

38

TEST: overhead
Number of nodes to authenticate one element and the overhead

0

10

20

30

40

50

60

10k 100k 1000k Set

Elements

Steps Loaded records

Logarithmic scale

20

39

Toward online services
Using Authenticated Skip Lists to Authenticate
Relational Tables is a solution that allows a
user to verify the authenticity and
completeness of simple queries results, even if
the database system is not trusted.
The storage overhead for the user is limited to
a single hash value.
The security of the presented method is based
on the reliability of ADS.
These techniques can be exploited to build
integrity verification services in online systems.

Security Framework
 The basis kept by the client is a

single hash value

 The client outsources
cryptographic metadata

 The server constructs proofs
from the crypto metadata

 The client verifies data from the
server using the basis and proof

 Attacker:
 malicious server or man-in-the-

middle

 tries to forge proofs for
corrupted data

 Security property: the
probability of success for
a polynomially bounded
attacker is negligible

 E.g., the following attacks
are unfeasible:
 Change a file
 Add a file

 Remove/hide a file

 Compatibility with
standard data encryption
methods

40

21

41

Dual Servers Architecture

Amazon S3 Authentication
 Client built on top of the Cockpit module of JetS3t (open source project)
 Authentication server runs on a Virtual Machine instance of Amazon EC2
 Storage service provided by Amazon S3
 [Heitzmann Palazzi Papamanthou Tamassia]

S3

EC2

38664e34f94365882791e78

BASIS
data

proof Authentication
Server

Storage
Server

Client

42

Amazon S3:
Simple Storage Service

Unlimited space
Uses the same infrastructure of
Amazon with the same level
of reliability, scalability and
security
Pay per use
 $0.10 per GB data transfer in
 $0.17 per GB data transfer out
 $0.15 per GB/Month of storage

used
 Second Life Update
 1TB; 40,000 download in a day $200

22

43

Amazon EC2:
Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is a web
service that provides resizable compute capacity in the
cloud. It is designed to make web-scale computing
easier for developers.
Amazon EC2 pay per use:

Amazon EC2 different virtual machines:
 Small 1.7 GB, 1 Cpu XEON 1.2 Ghz , 160 GB, 32-bit platform
 XL 7 GB, 20 Cpu XEON 1.2 Ghz , 1690 GB, 64-bit platform

Shopwiki.com

Dual Servers: Queries

 Storage server stores and returns data
 Authentication server stores crypto

metadata and returns proofs
 Client verifies data using basis and proof
 No authentication overhead

44

Storage
Server

Data

Client

38664e34f94365882791e78

BASIS

Authentication
Server

Metadata

23

Dual Servers: Updates

45

 Authentication server returns fragment
of crypto metadata affected by update

 Client computes new basis
 No authentication overhead

Storage
Server

Data

Client

38664e34f94365882791e78

BASIS

Authentication
Server

Metadata

46

Single Server Architecture

 Storage server stores both data and
crypto metadata

 Retrieval of proof
 Single query for relational storage
 Multiple queries for key-value storage

Storage
ServerClient

38664e34f94365882791e78

BASIS

Data
Metadata

proof

data

24

Authenticated JetS3t Cockpit

47

Crypto module
 Stores single hash

value

 Verifies proofs

Color annotations
 Green: key

authenticated

 Yellow: key missing

 Red: rogue key

Pop-up display
 Blue verified

 Orange corrupted

Demo Outline
 DELETE and PUT

operations detect
 invalid proofs

 LIST operation detects
 missing files
 rogue files
 invalid proofs

 GET operation detects
 corrupted files
 invalid proofs

48

25

49

Jets3t Extension

Cockpit

GET

PUT

DELETE

LIST

GUI

Cockpit
Extension

Authentication
Server Authenticated

Skip List

Utility Classes

Server

50

Authenticated GET
EC2 USER S3

AUTH_GET(x)

Proof: P1..PK

File

GET(x)

P1==H(File) ?

D = HashChain(Proof)

D==Basis ?

26

51

Authenticated PUT

AUTH_PUT(x, v) PUT(x, v)

Check
ASL Fragment
Using Basis

and Proof
Update
Basis

Proof

EC2 USER S3

ASL Fragment

52

Authenticated LIST

AUTH_LIST(prefix) LIST(prefix)

Check list1 using
Basis and Proof

proof
+

list1=[a1,a2 ... at]

list2=[a1,a2 ... a t]

list1 == list 2?

EC2 USER S3

27

53

List Operation: Overhead
Amazon S3

Amazon EC2

Time

Cockpit

Integrity
Checker

GUI

54

LIST 100 items

28

55

PUT 100 1K items

56

DELETE 100 1K items

29

57

58

Conclusions and Future Work

We presented a general architecture to
manage online storage services, that is:
 Space-efficient
 the client needs to keep only one single hash

value of the whole authentication structure
 Without practical time overhead
In the future we would like to
investigate how to extend this
architecture to other online services

30

59

Acknowledgements

Roberto Tamassia at Brown University
This work was supported in part by
grant IIS-0324846 from the National
Science Foundation

