authenticated data structures

B. Palazzi contributed to early versions of these slides. All mistakes are mine.

Authenticated Data Structure
(ADS)

* an ADS is a data structure that is "easy” to
check for integrity, even for parts of it

* basics
— It collects elements

— It associates a cryptograohic hash h with its content
* his called root hash or basis
 value of h «— content of the ADS

* Integrity verification

— each query comes with a proof that can be checked
against h

— each update can update h without knowing the whole
ADS

typical use cases

* by using an ADS, a client can efficiently detect small
tampering in large remotely-stored data set

— when tampered data are retrieved

— Important to be sure to never use tampered data in business
processes

 typical applications
— legal
» “legal” proof of correctness or tampering of storage
« service level agreement verification

— check backup integrity during partial restore
— cloud storage

— cryptocurrencies

— Internet of Things

cloud storage example

cloud-based storage
— virtually unlimited, cheap, untrusted

local storage
— limited, expensive, trusted
— e.g. loT device, smartphone, your PC
Idea:
store a large dataset on the cloud with an ADS
store just hlocally
clients read and write from the cloud
— query results, with their proof, are checked against trusted local h
— updates change remote dataset, remote ADS, and local trusted h

(some) ADS quality metrics

* as for regular data structures
— time complexity for queries
— time complexity for updates
— space overhead

* plus...
— time complexity for proof construction
— time complexity for proof check
— space complexity for proof

a very simple ADS:
authenticated list

 alinked list plus...

e ... each element contain a field h
h = hash(info | prev.h)

g Info Info g Info Info)
v v v v
ag—+> h >h >h >h
\ J _ J _ J _ J

* each his a crypt. hash of current info and
all previous info

authenticated list: (in)efficiency

append an element O(1)

update of info of a generic element O(n)
—n Is the number of elements

— this i1s not O(1), all following hashes should be
updated!

query O(n)

proof space O(n), time O(n)

— It Is made of previous h and all subsequent
Info

closely related with blockchain

— where append Is the most important operation

other ADSes

* Merkle Hash Tree (MHT)
— a.k.a Merkle Tree or Hash Tree

e authenticated skip list
« DB-tree [1] (ADSes on databases)

 static or dynamic
— e.g. for backup check a static data structure is ok
— MHT are mostly used in their static flavor

deterministic or randomized
— skip list are typically randomized

[1] Pennino, D., Pizzonia, M., & Papi, A. (2019). Overlay Indexes: Efficiently Supporting
Aggregate Range Queries and Authenticated Data Structures in Off-the-Shelf
Databases. arXiv preprint arXiv:1910.11754.

MHT: how does It work

 a (balanced binary) tree

 each node v contains a hash of the data
associated with leaves of the subtree rooted at v

Vo,o’

root hash=V,,=h(Vo] Vyq)

/N

@ Vi @ Vi1

{2 O\Vu /V).

Vo3

h(.) is a cryptographic hash function

Vi1 = h(Vi, | Vj3)

V,, =h(m,)

V, 3 =h(my)

data must be ordered

MHT: query verification

 proof for m;:
— consider the path p from m, to root (excluded)
— the proof is made of “steps”, one for each node v of p
— each step Is a pair
* label Left or Right depending on how parent of v is entered
« (hash in the) sibling of v root hash RH = Vo,o‘

« example: m,
—P=V21Vio
— proof

e R Vs
o | Viq

10

MHT: query verification

» suppose that verifier has a trusted version of the
root hash: tRH

« procedure for integrity check

— from proof re-compute RH,
In the example
RH = h(h(vy[h(m,)) | vi4) RH =Voo g

— compare
RH == tRH

11

MHT: query verification
semantic

* client is sure that the data of the reply
comes from the dataset associated with
the trusted version of the root hasH

12

MHT: query verification

* correctness (no false positives)
— client reconstructs part of the MHT

 security (no false negatives)
— I.e., tampering of data or MHT, but same RH

— means that attacker has found a collision for
the cryptographic hash

13

MHT: efficiency

 for a balanced MHT creating and checking
a proof is efficient

* length of the proofis O(log n)
—n: size of the stored data

14

MHT: query verification

(for empty result)
* proving absence Is equivalent to proving
two elements are consecutive

— for ordered sets
» consider proofs for mand m’ (m< m’)

 m and m’ are consecutive iff the label
sequences of their proofs satisfy the
following system of regular expressions
— |labels of proof of m = xLz
abels of proof of m' = yRz
X=R*
y=L*
— for perfectly balanced trees |x|=|y|, z possibly
empty 15

MHT: query verification

(for empty result)
. check:

— Isolate common part in the two poofs (z)

— check label sequences for the non common
part of the paths (should be R*L and L*R)

» example: prove that m, m; are consecutive

— common path empty "H=Voog
» just the root is common / \

— proof for m, QL ., v11
RL ./‘ '\‘

— proof for m, \/21 v22 v23
R | T T

m, m2 m, m,

16

MHT: query verification
(for empty result)

correctness and security derive from...

 correctness and security of proofs of m
and m’

» correspondence between structure of the
tree and the regular expressions

17

MHT: update

* we have to update m to a new version m’

— root hash will change as well as several internal
hashes

* procedure on the trusted side (e.g. client)
— get proof p for m and check it

— compute the new hashes of the path to the root
following p substituting m’ in place of m

— the lastly computed hash is the new trusted root hash

* procedure on the untrusted side (e.g. server)

— update the hashes of the path to the root substituting
m’in place of m

18

MHT: update

« example: update m, to a new version m,’

updated

* O(log n) time for balanced trees

19

an ADS use case: check for
malicilous cloud server

* client stores root hash locally
* ADS can be stored in cloud

« ADS can be applied to regular cloud storage
— I.e., storage might not know about ADS
— ADS should be properly represented in the storage

; ! query/update
, Client
I |Application|%
trusted | | ansl/ver untrusted
|| 38664e34194365882791e78 || . .
I integrit
I root hash : prgofy
; tRH |

20

ADS authenticated query

ADS
storage

protocol

client

tRH

AUTH_query(x)

Proof: h;..hy

regular query(x)

Storage

>

result

>

h,==H(result) ?

tRH?

>

HashChain(Proof) ==

ﬁ

21

ADS authenticated update

ADS

protocol

storage

client

tRH

gquery ADS x

:|‘ Proof

local tRH

update ADS

e

insert x

data
storage

: Update

22

security remarks

* tampering with the ADS cannot lead to
undetected data tampering

e If an ADS is lost, it could be re-created
from data

 caveat: usually root hash depends not only
by data but also from ADS internal
structure (e.g. tree balancing)

23

