
©
 2

0
1

7
-2

0
1

9
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

1

authenticated data structures

B. Palazzi contributed to early versions of these slides. All mistakes are mine.
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Authenticated Data Structure 
(ADS)

• an ADS is a data structure that is “easy” to 
check for integrity, even for parts of it

• basics

– it collects elements 

– it associates a cryptographic hash h with its content 
• h is called root hash or basis

• value of h ↔ content of the ADS

• integrity verification

– each query comes with a proof that can be checked 
against h 

– each update can update h without knowing the whole 
ADS

2

h
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typical use cases

• by using an ADS, a client can efficiently detect small 
tampering in large remotely-stored data set

– when tampered data are retrieved

– important to be sure to never use tampered data in business 
processes 

• typical applications

– legal 

• “legal” proof of correctness or tampering of storage

• service level agreement verification

– check backup integrity during partial restore

– cloud storage 

– cryptocurrencies

– Internet of Things

3



©
 2

0
1

7
-2

0
1

9
 m

a
u

ri
z
io

 p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

cloud storage example

• cloud-based storage

– virtually unlimited, cheap, untrusted

• local storage

– limited, expensive, trusted

– e.g. IoT device, smartphone, your PC

• idea:
store a large dataset on the cloud with an ADS 
store just h locally

• clients read and write from the cloud

– query results, with their proof, are checked against trusted local h

– updates change remote dataset, remote ADS, and local trusted h
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(some) ADS quality metrics

• as for regular data structures
– time complexity for queries

– time complexity for updates

– space overhead

• plus...
– time complexity for proof construction

– time complexity for proof check

– space complexity for proof

5
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a very simple ADS: 
authenticated list

• a linked list plus...

• ... each element contain a field h
h = hash( info | prev.h )

• each h is a crypt. hash of current info and 
all previous info

6
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info
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authenticated list: (in)efficiency

• append an element O(1)

• update of info of a generic element O(n)
– n is the number of elements

– this is not O(1), all following hashes should be 
updated!

• query O(n)

• proof space O(n), time O(n)

– it is made of previous h and all subsequent 
info

• closely related with blockchain
– where append is the most important operation

7
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other ADSes

• Merkle Hash Tree (MHT)

– a.k.a Merkle Tree or Hash Tree

• authenticated skip list

• DB-tree [1] (ADSes on databases)

• static or dynamic

– e.g. for backup check a static data structure is ok

– MHT are mostly used in their static flavor

• deterministic or randomized

– skip list are typically randomized

[1] Pennino, D., Pizzonia, M., & Papi, A. (2019). Overlay Indexes: Efficiently Supporting 
Aggregate Range Queries and Authenticated Data Structures in Off-the-Shelf 
Databases. arXiv preprint arXiv:1910.11754.

8
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MHT: how does it work
• a (balanced binary) tree

• each node v contains a hash of the data 
associated with leaves of the subtree rooted at v

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

h

data must be ordered

h(.) is a cryptographic hash function

V2,2 = h(m3) V2,3 = h(m4)

V1,1 = h( V2,2 | V2,3 )

root hash= V0,0 = h( V1,0 | V1,1 )
v0,0

9
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MHT: query verification

• proof for mi:

– consider the path p from mi to root (excluded)

– the proof is made of “steps”, one for each node v of p

– each step is a pair 
• label Left or Right depending on how parent  of v is entered

• (hash in the) sibling of v

• example: m2

– p = v2,1 v1,0

– proof 
• R v2,0

• L v1,1

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

root hash RH = v0,0

10
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MHT: query verification

• suppose that verifier has a trusted version of the 
root hash: tRH

• procedure for integrity check

– from proof re-compute RH,
in the example 
RH = h(h(v2,0 |h(m2)) | v1,1)

– compare 
RH == tRH

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

RH = v0,0

11
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MHT: query verification 
semantic

• client is sure that the data of the reply 
comes from the dataset associated with 
the trusted version of the root hasH

12
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MHT: query verification

• correctness (no false positives)
– client reconstructs part of the MHT

• security (no false negatives)
– i.e., tampering of data or MHT, but same RH

– means that attacker has found a collision for 
the cryptographic hash

13
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MHT: efficiency

• for a balanced MHT creating and checking 
a proof is efficient

• length of the proof is O( log n )
– n: size of the stored data

14
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MHT: query verification
(for empty result)

• proving absence is equivalent to proving 
two elements are consecutive
– for ordered sets

• consider proofs for m and m’ (m < m’)

• m and m’ are consecutive iff the label 
sequences of their proofs satisfy the 
following system of regular expressions
– labels of proof of m  =  xLz

labels of proof of m’ =  yRz
x = R*
y = L*

– for perfectly balanced trees |x|=|y|, z possibly 
empty 15
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MHT: query verification
(for empty result)

• check:
– isolate common part in the two poofs  (z)

– check label sequences for the non common 
part of the paths  (should be R*L and L*R )

• example: prove that m2 m3 are consecutive

– common path empty
• just the root is common

– proof for  m2

RL

– proof for m3

LR

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

RH = v0,0

16
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MHT: query verification
(for empty result)

correctness and security derive from...

• correctness and security of proofs of m 
and m’ 

• correspondence between structure of the 
tree and the regular expressions

17
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MHT: update

• we have to update m to a new version m’

– root hash will change as well as several internal 
hashes

• procedure on the trusted side (e.g. client)

– get proof p for m and check it

– compute the new hashes of the path to the root 
following p substituting m’ in place of m 

– the lastly computed hash is the new trusted root hash

• procedure on the untrusted side (e.g. server)
– update the hashes of the path to the root substituting 

m’ in place of m

18
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MHT: update

• example: update m2  to a new version m2’

• O(log n) time for balanced trees

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

v0,0

updated
from proof

19
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an ADS use case: check for 
malicious cloud server

• client stores root hash locally

• ADS can be stored in cloud

• ADS can be applied to regular cloud storage

– i.e., storage might not know about ADS

– ADS should be properly represented in the storage

Storage
Server

Client
Application

ADS

answer
+ 

integrity 
proof

query/update

38664e34f94365882791e78

untrusted

root hash
tRH

trusted

20
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ADS authenticated query 
protocol

ADS 
storage client Storage

AUTH_query(x)

Proof: h1..hK result

regular query(x)

h1==H(result) ?

HashChain(Proof) ==
tRH?

tRH

21
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ADS authenticated update 
protocol

update ADS insert x

Update
local tRH

ADS 
storage client

data 
storage

query ADS x

Proof

tRH

22
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security remarks

• tampering with the ADS cannot lead to 
undetected data tampering

• if an ADS is lost, it could be re-created 
from data

• caveat: usually root hash depends not only 
by data but also from ADS internal 
structure (e.g. tree balancing)

23


