
Linux Security

Overview
 This presentation will introduce you to some basic Linux concepts with an
in-dept explanations from the security point-of-view

• Services
• Filesystem permissions
• Login
• Administrative permissions
• Logging
• SSH
• Open ports

Services
 Services are handled by systemd
 systemd is an init system used in many Linux distributions to bootstrap the
user space and manage system processes after booting.

• It handles both system and user services
 systemctl is a command-line utility in Linux that is used to examine and
control the systemd system and service manager.
 Here are the key aspects of systemctl:

• Service Management
• Log Viewing

 Historically, there were other service handlers
• e.g., sysV, upstart, etc.

systemctl

 systemctl invoked with no params gives an overview of the whole operating
system. It lists all the units (mainly services) of the system and tells their state

systemctl

 Other functions can be accessed with systemctl <command> <unit>,
where the unit is the name of the unit (like a service, socket, device, mount, d-
bus, etc.) to be managed and the command can be one of the following:

• start: starts a service.
• stop: stops a running service.
• restart: restarts a service, stopping it and then starting it again.
• status: displays the current status of a service.
• enable: enables a service to start on boot.
• disable: disables a service from starting on boot.
• reload: reloads the configuration of a service without interrupting its operation.

• Not all the services supports this command.

Unit files
 When invoking systemctl, it lists all the units in the system. But how can
systemd know all the units? How are they configured?
 Each unit has a unit file
 Unit files are located into the /lib/systemd/system/ and the
/etc/systemd/system directory

• The first one represents the DEFAULTS units provided by the package maintainer
• The second one represents a copy that can be edited to change the behaviour
• DO NOT EVER MODIFY THE FILES IN THE /lib/systemd/system/ directory

 Each file represents a unit and contains all the information of the unit itself
• Environment variables/files
• Startup/shutdown scripts
• Unit dependency
• and a lot more!

Services configurations
 Often located in a subfolder of the /etc folder
 The subfolder is often the name of the service
 If this is not the case,

• they can be specified in the unit file
• they can be read in the process command line (ps aux | grep PID)
• you can always ask google 

 Often inside the main configuration file there is an “include” to other files
 Directories called *.d are often use to keep configuration files to be included

Change service configuration
 A change to the service configuration is never applied directly
 Usually, the configuration is applied at the startup of each service and does
not change unless the administrator instructs the service to reload the
configuration
 To properly change a service configuration:

• Change the configuration file
• Test the file for syntax (or logical) errors

• Look for proper commands online
• Reload or restart the service to apply the configuration

Filesystem permissions
 The main folders of the filesystem have some "default" permissions
 Some rules often applies

• The /etc directory can be browsed by any users, but only the administrator can change
its contents

• The user needs to know the services configuration to understand how to interact with
them and his limits

• If a user was allowed to change a configuration, he could easily gain administrative
access to the machine (services are executed by root)
 Similar rules also applies for binaries

• The users home directories are not accessible by other users
• For privacy and security reasons

Login phases
The login process is composed of 4 main phases:
 Request for user credentials

• e.g., username and password
 Check the database for the correctness of those credentials
 Change the current user and group to the newly logged user

• setreuid() + setregid()
 execve of the shell

• or of the desktop environment

The standard user database
 Users and their attributes in the /etc/passwd file

• World readable
 Groups definitions in the /etc/group file

• Contains also the list of all the users belonging to each group
• World readable

 passwords stored in the /etc/shadow file
• Readable only by root

 the passwd and shadow files are essential components of Linux and Unix-like
operating systems, playing a crucial role in storing user account information

Passwd file
 Contains information about user accounts.
 World readable
 It's a text file with one line per user account, providing several pieces of
information such as the username, user ID (UID), group ID (GID), etc.
 Example:

• username:x:1001:1001:User Name,,,:/home/username:/bin/bash

Content of /etc/passwd
 Login name
 Encrypted password

• No more used, but kept for compatibility reasons
 Numerical user ID (root is UID=0)
 Numerical group ID
 User name

• also known as the GECOS field
 User home directory (es. /home/pizzonia)
 User command interpreter (es. /bin/bash)

Shadow file
 This file contains the password hashes for all users in the system.
 This file is accessible only to privileged users (like root).
 Each line in the shadow file corresponds to a user's password and contains
several fields, including the username, hashed password, and password aging
information
 The hashing of the password ensures that even if someone gains access to
this file, they cannot easily decipher the actual passwords.
 During the hashing process, a salt is used to enhance security by introducing
a random and unique value that is combined with the user's password before
the hashing algorithm is applied.
 Example:

• username:1saltsalt$encryptedpassword:17958:0:99999:7:::

Content of /etc/shadow
 Login name (foreign key /etc/passwd)
 Encrypted password

• idsalt$hashedpassword
• id: algorithm code

 Days since Jan 1, 1970 that password was last changed
 Days before password may be changed
 Days after which password must be changed
 Days before password is to expire that user is warned
 Days after password expires that account is disabled
 Days since Jan 1, 1970 that account is disabled
 A reserved field

Editing passwd and shadow files
 Directly editing the passwd and shadow file is highly discouraged
 The format is very rigid and even the smallest error could result in the system
being unusable

• Users can no more login
 There are lots of dedicated commands to manage users and their passwords

• useradd and adduser
• userdel and deluser
• usermod
• passwd

Authentication flexibility
 there are a lot of programs that need authentication

• system programs e.g., atd, chfn, chsh, cron, cupsys, cvs, kdm, kdm-np,
libcupsys2, login, passwd, ppp, samba, ssh, su, sudo, telnetd, xdm,
xscreensaver

• external software e.g., mysql, apache, ecc.
 there are many policies and ways to authenticate

• local authentication e.g., /etc/passwd, /etc/shadow
• central authentication e.g., radius, active directory, ldap
• different policies e.g., something that I have, somewhere I am, something

I know, something I am

Authentication flexibility
 It's impractical and often unfeasible for every piece of software to natively
support every type of authentication mechanism that a system might use.
 As a result, software systems often rely on standard or widely-adopted
authentication protocols, and may also provide interfaces for integrating
additional, more specialized authentication services.

PAM
 PAM allows Linux systems to integrate a variety of authentication methods
without modifying individual applications.
 Offers customizable authentication for different applications through simple
configuration files.
 Compatible with all sort of authentication policies and types

• e.g., password, biometrics, tokens, smart-card, etc.
 Enables or disables authentication methods dynamically without affecting
system processes.
 Integral part of most modern Linux distributions, ensuring broad compatibility
and support.

PAM: from the administrator point
 no need to have coding skills or edit every software
 possibly independent configuration for each application
 lots of authentication types possible
 multi-factor authentication

PAM: configuration example
/etc/pam.d/$ cat login

PAM configuration for login

auth requisite pam_securetty.so

auth required pam_nologin.so

auth required pam_env.so

auth required pam_unix.so nullok

#auth required pam_permit.so

account required pam_unix.so

session required pam_unix.so

session optional pam_lastlog.so

Sudo and sudoers file
 Logging using root credentials (i.e., the credentials of the user called root) is
generally discouraged

• Usually, the root user has its login password NOT set, to avoid this behaviour
 To obtain administrator privileges the best practise is to use the sudo
command

• This allows to log all the accesses with administrator privileges and to limit the
capabilities of single users

 The configuration of sudo is stored in the /etc/sudoers file
 In the sudoers file it is possible to specify lots of different configurations

• e.g., some users could run sudo without typing the password
• e.g., some users could be allowed to run just some commands as administrator without

the ability to be root

Logging
 Logging is essential
 Linux logging can happen in two different ways

• Direct file logging
• Journald

 Historically the logging was handled by syslog
 In both cases, logs are written to files and those files in the time can grow
very fast

• The standard practice in Linux is to create an archive of old logs to reduce disk space
• Logrotate is responsible for this task

• If a user needs to inspect log files, it is better to use proper commands to avoid opening a
very large text file

• e.g., head, tail, grep, less, more, etc.

Journald
 Journald is a systemd unit designed to acquire, store and show logs
 Since the process of the services are all handled by systemd, their stdout
and stderr are automatically captured by Journald to save the proper logs
 Journald is available on the vast majority of Linux systems
 Journald by defaults logs the kernel and all the applications (services) that
logs to stdout and stderr

• Default system utilities logs in Journald
 Journald has a command line utility called journalctl

• journalctl can be used to get logs for a specific unit with a proper command
• i.e., journalctl –u <unit>

File Logging
 Programmers may choose to not print the logs to stdout and stderr but to
save them directly into a file
 Usually, log files are stored in the /var/log directory
 Programmers may choose to log wherever they want

• Wherever the software has write access permissions
• Usually, the log file location can be specified in the configuration file of the service

SSH
 The SSH (Secure Shell) server daemon is a crucial component of secure
remote administration and file transfer in computer networks.
 Operating as a background process on a server, the SSH daemon enables
secure communication between devices over an insecure network, such as the
Internet.
 It utilizes strong encryption algorithms to ensure data integrity and
confidentiality during the exchange of information.

SSH
 It utilizes strong encryption algorithms to protect data integrity and
confidentiality during the exchange of information.
 The SSH server daemon listens for incoming connection requests on a
specified port (port 22) and authenticates remote users or systems using
various methods, including passwords, public-key cryptography, or other
authentication mechanisms.

• The password mechanism is enabled by default, but it is highly insecure since usually
passwords are much shorter than public-key certificates

 Once authenticated, users gain access to a command-line interface, allowing
them to execute commands, transfer files, and manage system configurations
securely.

Open Ports
 Network ports are the primary entry points for attacks.
 Even with a firewall, it's advisable to close unnecessary ports.

• Attackers may circumvent the firewall in various ways.
 When a program binds a port in listen mode, choosing the listening address
is possible.

• It's important to bind only to the correct address.
• Generally, binding to 0.0.0.0/0 is poor practice unless the service needs to be available

across all network interfaces.
• Binding to the loopback interface (127.0.0.1) is a safer practice, as it restricts access to

the local machine only.
 To check for open ports, use the command netstat -tulnp.

	Linux Security
	Overview
	Services
	systemctl
	systemctl
	Unit files
	Services configurations
	Change service configuration
	Filesystem permissions
	Login phases
	The standard user database
	Passwd file
	Content of /etc/passwd
	Shadow file
	Content of /etc/shadow
	Editing passwd and shadow files
	Authentication flexibility
	Authentication flexibility
	PAM
	PAM: from the administrator point
	PAM: configuration example
	Sudo and sudoers file
	Logging
	Journald
	File Logging
	SSH
	SSH
	Open Ports

