Linux Security

Overview

m This presentation will introduce you to some basic Linux concepts with an

iIn-dept explanations from the security point-of-view
* Services

Filesystem permissions

Login

Administrative permissions

Logging

SSH

Open ports

Services

m Services are handled by systemd
m systemd is an init system used in many Linux distributions to bootstrap the

user space and manage system processes after booting.
* It handles both system and user services

m systemct] is a command-line utility in Linux that is used to examine and
control the systemd system and service manager.

m Here are the key aspects of systemcitl:
* Service Management
* Log Viewing

m Historically, there were other service handlers
* e.g., sysV, upstart, etc.

systemct |

m systemctl invoked with no params gives an overview of the whole operating
system. It lists all the units (mainly services) of the system and tells their state

root@nginx:~# systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
-.mount loaded active mounted Root Mount
dev-.1lxc-proc.mount loaded active mounted /dev/.lxc/proc
dev-.1lxc-sys.mount loaded active mounted /dev/.lxc/sys
dev-full.mount loaded active mounted /dev/full
ifupdown-pre.service loaded active exited Helper to synchronize boot up for ifupdown
ifupdown-wait-online.service loaded active exited Wait for network to be configured by 1fupdown
networking.service loaded active exited Raise network +interfaces
nftables.service loaded active exited nftables

nginx.service loaded active running A high performance web server and a reverse proxy server
postfix.service loaded active exited Postfix Mail Transport Agent

postfix@-.service loaded active running Postfix Mail Transport Agent (instance -)

rsyslog.service loaded active running System Logging Service

ssh@2- RS :61209.service loaded active running OpenBSD Secure Shell server per-connection daemon (:161209)

systemct |

m Other functions can be accessed with systemct] <command> <unit>,
where the unit is the name of the unit (like a service, socket, device, mount, d-

bus, etc.) to be managed and the command can be one of the following:
° start: starts a service.
* stop: stops a running service.
°* restart: restarts a service, stopping it and then starting it again.
* status: displays the current status of a service.
* enable: enables a service to start on boot.
* disable: disables a service from starting on boot.
* reload: reloads the configuration of a service without interrupting its operation.

* Not all the services supports this command.

Unit files

s When invoking systemctl, it lists all the units in the system. But how can
systemd know all the units”? How are they configured?
m Each unit has a unit file
m Unit files are located into the /11b/systemd/system/ and the
/etc/systemd/system directory
* The first one represents the DEFAULTS units provided by the package maintainer
* The second one represents a copy that can be edited to change the behaviour
« DO NOT EVER MODIFY THE FILES IN THE /1ib/systemd/system/ directory
m Each file represents a unit and contains all the information of the unit itself
* Environment variables/files
e Startup/shutdown scripts

* Unit dependency
* and a lot more!

Services configurations

Often located in a subfolder of the /etc folder
The subfolder is often the name of the service

If this is not the case,

* they can be specified in the unit file

* they can be read in the process command line (ps aux | grep PID)
* you can always ask google ©

Often inside the main configuration file there is an “include” to other files
Directories called * . d are often use to keep configuration files to be included

Change service configuration

m A change to the service configuration is never applied directly

m Usually, the configuration is applied at the startup of each service and does
not change unless the administrator instructs the service to reload the
configuration

m To properly change a service configuration:
* Change the configuration file
* Test the file for syntax (or logical) errors

* Look for proper commands online
* Reload or restart the service to apply the configuration

Filesystem permissions

m The main folders of the filesystem have some "default" permissions

m Some rules often applies
* The /etc directory can be browsed by any users, but only the administrator can change
its contents

* The user needs to know the services configuration to understand how to interact with
them and his limits

* If a user was allowed to change a configuration, he could easily gain administrative
access to the machine (services are executed by root)
e Similar rules also applies for binaries
* The users home directories are not accessible by other users

* For privacy and security reasons

Login phases

The login process is composed of 4 main phases:

m Request for user credentials
° e.g., username and password
Check the database for the correctness of those credentials
m Change the current user and group to the newly logged user
. setreuid() + setregid()

m execve of the shell
. or of the desktop environment

The standard user database

m Users and their attributes in the /etc/passwd file
* World readable

m Groups definitions in the /etc/group file

* Contains also the list of all the users belonging to each group
* World readable

m passwords stored in the /etc/shadow file
* Readable only by root

m the passwd and shadow files are essential components of Linux and Unix-like
operating systems, playing a crucial role in storing user account information

Passwd file

m Contains information about user accounts.

m World readable

m It's a text file with one line per user account, providing several pieces of
information such as the username, user ID (UID), group ID (GID), etc.

m Example:
* username:x:1001:1001:User Name,,,:/home/username:/bin/bash

Content of /etc/passwd

Login name

Encrypted password
* No more used, but kept for compatibility reasons

Numerical user ID (root is UID=0)
Numerical group 1D

User name
* also known as the GECOS field

User home directory (es. /home/pizzonia)
User command interpreter (es. /bin/bash)

Shadow file

m This file contains the password hashes for all users in the system.

m This file is accessible only to privileged users (like root).

m Each line in the shadow file corresponds to a user's password and contains
several fields, including the username, hashed password, and password aging
information

m The hashing of the password ensures that even if someone gains access to
this file, they cannot easily decipher the actual passwords.

m During the hashing process, a salt is used to enhance security by introducing
a random and unique value that is combined with the user's password before
the hashing algorithm is applied.

m Example:
e username:$1%$saltsalt$encryptedpassword:17958:0:99999:7:::

Content of /etc/shadow

Login name (foreign key /etc/passwd)

Encrypted password
* Sidsaltdhashedpassword
* id: algorithm code

Days since Jan 1, 1970 that password was last changed
Days before password may be changed

Days after which password must be changed

Days before password is to expire that user is warned
Days after password expires that account is disabled
Days since Jan 1, 1970 that account is disabled

A reserved field

Editing passwd and shadow files

m Directly editing the passwd and shadow file is highly discouraged
m The format is very rigid and even the smallest error could result in the system

being unusable
* Users can no more login

m There are lots of dedicated commands to manage users and their passwords
* useradd and adduser
* userdel and deluser
* usermod
* passwd

Authentication flexibility

m there are a lot of programs that need authentication

* system programs e.g., atd, chfn, chsh, cron, cupsys, cvs, kdm, kdm-np,
libcupsysZ2, login, passwd, ppp, samba, ssh, su, sudo, telnetd, xdm,
Xscreensaver

* external software e.g., mysql, apache, ecc.

m there are many policies and ways to authenticate
* |ocal authentication e.g., /etc/passwd, /etc/shadow
* central authentication e.g., radius, active directory, Idap

 different policies e.g., something that | have, somewhere | am, something
| know, something | am

Authentication flexibility

m It's impractical and often unfeasible for every piece of software to natively
support every type of authentication mechanism that a system might use.

m As a result, software systems often rely on standard or widely-adopted
authentication protocols, and may also provide interfaces for integrating
additional, more specialized authentication services.

PAM

m PAM allows Linux systems to integrate a variety of authentication methods
without modifying individual applications.

m Offers customizable authentication for different applications through simple
configuration files.

m Compatible with all sort of authentication policies and types
* e.g., password, biometrics, tokens, smart-card, etc.

m Enables or disables authentication methods dynamically without affecting
system processes.

m Integral part of most modern Linux distributions, ensuring broad compatibility
and support.

PAM: from the administrator point

no need to have coding skills or edit every software
possibly independent configuration for each application
lots of authentication types possible

multi-factor authentication

PAM: configuration example

/etc/pam.d/$ cat login
PAM configuration for login

auth requisite pam_securetty.so
auth required pam_nologin.so
auth required pam_env.so

auth required pam_unix.so nullok
#auth required pam_permit.so
account required pam_unix.so
session required pam_unix.so

session optional pam_lastlog.so

Sudo and sudoers file

m Logging using root credentials (i.e., the credentials of the user called root) is
generally discouraged

e Usually, the root user has its login password NOT set, to avoid this behaviour
m To obtain administrator privileges the best practise is to use the sudo
command

* This allows to log all the accesses with administrator privileges and to limit the
capabilities of single users

m The configuration of sudo is stored in the /etc/sudoers file

m In the sudoers file it is possible to specify lots of different configurations
* e.g., some users could run sudo without typing the password
* e.g., some users could be allowed to run just some commands as administrator without
the ability to be root

Logging

m Logging is essential
m Linux logging can happen in two different ways
* Direct file logging
e Journald
m Historically the logging was handled by syslog
m In both cases, logs are written to files and those files in the time can grow

very fast
* The standard practice in Linux is to create an archive of old logs to reduce disk space

* Logrotate is responsible for this task
* |f a user needs to inspect log files, it is better to use proper commands to avoid opening a
very large text file

* e.g., head, tail, grep, less, more, etc.

Journald

m Journald is a systemd unit designed to acquire, store and show logs

m Since the process of the services are all handled by systemd, their stdout
and stderr are automatically captured by Journald to save the proper logs

m Journald is available on the vast majority of Linux systems

m Journald by defaults logs the kernel and all the applications (services) that

logs to stdout and stderr
e Default system utilities logs in Journald

s Journald has a command line utility called journalct]
* journalctl can be used to get logs for a specific unit with a proper command

* ji.e.,, journalct]l -u <unit>

File Logging

m Programmers may choose to not print the logs to stdout and stderr but to
save them directly into a file
m Usually, log files are stored in the /var/log directory

m Programmers may choose to log wherever they want
* Wherever the software has write access permissions
* Usually, the log file location can be specified in the configuration file of the service

SSH

m The SSH (Secure Shell) server daemon is a crucial component of secure
remote administration and file transfer in computer networks.

m Operating as a background process on a server, the SSH daemon enables
secure communication between devices over an insecure network, such as the
Internet.

m |t utilizes strong encryption algorithms to ensure data integrity and
confidentiality during the exchange of information.

SSH

m |t utilizes strong encryption algorithms to protect data integrity and
confidentiality during the exchange of information.

m The SSH server daemon listens for incoming connection requests on a
specified port (port 22) and authenticates remote users or systems using
various methods, including passwords, public-key cryptography, or other

authentication mechanisms.
* The password mechanism is enabled by default, but it is highly insecure since usually
passwords are much shorter than public-key certificates

m Once authenticated, users gain access to a command-line interface, allowing
them to execute commands, transfer files, and manage system configurations
securely.

Open Ports

m Network ports are the primary entry points for attacks.
m Even with a firewall, it's advisable to close unnecessary ports.
e Attackers may circumvent the firewall in various ways.
m \WWhen a program binds a port in listen mode, choosing the listening address
IS possible.

* It's important to bind only to the correct address.
* Generally, binding to 0.0.0.0/0 is poor practice unless the service needs to be available

across all network interfaces.
* Binding to the loopback interface (127.0.0.1) is a safer practice, as it restricts access to

the local machine only.
m To check for open ports, use the command netstat -tulnp.

	Linux Security
	Overview
	Services
	systemctl
	systemctl
	Unit files
	Services configurations
	Change service configuration
	Filesystem permissions
	Login phases
	The standard user database
	Passwd file
	Content of /etc/passwd
	Shadow file
	Content of /etc/shadow
	Editing passwd and shadow files
	Authentication flexibility
	Authentication flexibility
	PAM
	PAM: from the administrator point
	PAM: configuration example
	Sudo and sudoers file
	Logging
	Journald
	File Logging
	SSH
	SSH
	Open Ports

