XSS and CSRF

Outline

m Client-Side Security
* Resources
¢ SOP — Same Origin Policy

m XSS - Cross-Site Scripting
m CSRF - Cross-Site Request Forgery

Cross-Site Scripting

Cross-Site Scripting

m An XSS is an injection of JavaScript code inside a page
m |f an attacker manages to execute JavaScript code inside a page of a victim,
he/she can:

* Steal session cookies, and then log-in as the victim

e Steal information inside pages
* Do actions on behalf of the victim

Cross-Site Scripting

m XSSs are a type of code injections

m They happen in two ways:
* When the backend reflects unsafe user input on the output page, without any type of
sanitization
* When a generated page unsafely use external input (DOM XSS)

Reflected XSS

m Reflected XSSs are the most common XSS types

m They are called reflected because they happen when the content of some HTTP
variable is "reflected" (= echoed) on the response page

m |f this reflection happens without any sanitization, then it is possible to inject a
<script> tag, and consequentially some JavaScript code

Reflected XSS

m For example, take the following PHP code of the site "foo.bar":

<?php
echo 'hello ' . $ GET['name'];

Reflected XSS

m |f the script is in the page "hello.php”, then at the link
http://foo.bar/hello.php?name=baz a user would get the response:

m The parameter name is reflected in the page, without any kind of sanitization

hello baz

http://foo.bar/hello.php?name=baz

Reflected XSS

m An attacker could then inject a <script> tag, with some php
m For example, once a user clicks on the link

http://foo.bar/hello.php?name=<script>alert(1)</script>

m The page would execute the JavaScript code "alert(1)", and the user would
only see a pop-up with a 1

Stored XSS

m Stored XSSs work in a similar way of the reflected XSSs

m They are an injection flaw too, but they don't require user interaction at all
m A stored XSS takes place when some data that is "stored" by the site is
reflected somewhere without any sanitization

m Stored means that it is saved in some way by the application, for example
inside a database

Stored XSS

m A typical example is the comment section of a blog:
* |f the content of a comment is not sanitized before being outputted in the page, a rogue
user can inject JavaScript code

m Since the comment is saved in the database, every user that visits the page
with that comment is "attacked" by the malicious JavaScript code

Stored XSS

m This kind of injection doesn't require any user interaction at all, because the
attacker doesn't need to send a link to the victim

m The user just needs to wait until the victim visit the compromised page by
itself

Preventing XSS

m Reflected and Stored XSS are difficult to prevent:
* Even in a small web application, there are a lot of ways some user input can be output
* Different contexts require different sanitization methods

m As always, the general rule is to sanitize any unsafe data

Preventing XSS

m Generally, the sanitization is done by replacing every dangerous HTML
character with its HTML encoded version
m Dangerous characters are different by the point in which they are echoed on
the page, normally they are:

o <>"

m Once "HTML-encoded", they become:
e < > "

Preventing XSS

m Every language has its functions that do this kind of sanitization
m PHP for example uses htmispecialchar
* https://www.php.net/manual/en/function.htmlspecialchars.php

m Using this kind of function can be dangerous:
* ltis very likely to forget to call them when echoing some user-supplied data

https://www.php.net/manual/en/function.htmlspecialchars.php

Preventing XSS

m A less error-prone way to prevent XSS is to use templates
m Templates are documents that look-like the final page, with placeholders in

which unsafe data can be echoed in the page in a safe manner
m Since every output in which some user-input can be echoed is a placeholder,

the web application can sanitize everything by default

Preventing XSS

m For example, a template of the "hello" page would look like the following

<html>
<head»>....</head><body>
Hello {{user_name}}
</body>

</html>

m The "template engines”, that is the program that renders the template, would
then substitute the user_name var with the sanitized user input, thus preventing
the XSS

EXxcercise

http://xss1.challs.cyberchallenge.it/
Goal: get the admin cookie!

The cookie can be read with “document.cookie”

Cross-Site Request Forgery

CSRF

m Cross-Site Request Forgery (CSRF) is a type of attack that occurs when a
malicious Web site, email, blog, instant message, or program causes a user’'s
Web browser to perform an unwanted action on a trusted site for which the
user is currently authenticated

CSRF

m [magine a bank that lets users send money to other users
m One they start the transaction, a link the following is generated:

http://bank.site/transact?to=user2&money=1000
m An attacker could replace the "user2" with its account name, then send the

link to the victim
m [f the victim clicks on the link, then the transaction

CSRF

m An attacker could replace user2 with its account name, then send the link to
the victim

http://bank.site/transact?to=attacker&money=1000

m [f the victim clicks on the link, then the transaction would start, sending
1000€ to attacker

CSRF - Mitigations

m This happens because HTTP is stateless, and the server is not aware of the
site from which the link is accessed

m Prevention is simple:
* Make the request stateful

CSRF - Mitigations

To make the request stateful there are a lot of ways

The best way is to create a random token and save it in the session

When the link that triggers an action is generated, the token is inserted

The backend then checks if the provided token is the same as the one in the
session, and, if not the backend rejects the action

CSRF - Mitigations

m This works because of the SOP

m The only way an attacker could get a valid token, would be:
* To get the content of the page (and with SOP the attacker can't)
* To get the cookie/session (and the attacker can't)

CSRF - Mitigations

m Since 2018, most browsers implement the SameSite attribute for cookies
m The SameSite attribute governs the way a cookie is shared or not to a
certain site when visiting or loading assets from another location

CSRF - Mitigations

m The decision on sharing a cookie or not is based on the origin of the cookie,

with the concept of "parties”
e Same Party: The origin is the same
* First Party site: The origin differs only by the subdomain
* Third Party site: The origin is completely different

CSRF - Mitigations

CSRF - Mitigations

m To activate this mechanism, cookies use the flag "SameSite"

m This flag can have 3 different values:
e Strict: Share the cookie only with Same Site locations
* Lax: Share the cookie only with First Party locations (and same site)
* None: Share the cookie with every site
m Note that if the SameSite attribute is not set, by default, the browser treats

the cookie as lax

CSRF - Mitigations

m For example, let's say the site www.google.com has the cookie "foo" with the
SamesSite attribute set to lax

m |f www.example.com loads an image from www.google.com, the browser will
not send the cookie "foo" with the request, because www.example.com is a
third party site respectively to www.google.com

m This mechanism effectively prevents CSRF, because an attacker is not able
anymore to send authenticated requests to other origins

EXxcercise

http://shops.challs.olicyber.it/

EXxcercise

http://nflagt.challs.cyberchallenge.it/

