
XSS and CSRF

Outline
n Client-Side Security

• Resources
• SOP – Same Origin Policy

n XSS – Cross-Site Scripting
n CSRF – Cross-Site Request Forgery

Cross-Site Scripting

Cross-Site Scripting
n An XSS is an injection of JavaScript code inside a page
n If an attacker manages to execute JavaScript code inside a page of a victim,
he/she can:

• Steal session cookies, and then log-in as the victim
• Steal information inside pages
• Do actions on behalf of the victim

Cross-Site Scripting
n XSSs are a type of code injections
n They happen in two ways:

• When the backend reflects unsafe user input on the output page, without any type of
sanitization

• When a generated page unsafely use external input (DOM XSS)

Reflected XSS

n Reflected XSSs are the most common XSS types
n They are called reflected because they happen when the content of some HTTP
variable is "reflected" (= echoed) on the response page
n If this reflection happens without any sanitization, then it is possible to inject a
<script> tag, and consequentially some JavaScript code

Reflected XSS
n For example, take the following PHP code of the site "foo.bar":

<?php
echo 'hello ' . $_GET['name'];

Reflected XSS
n If the script is in the page "hello.php", then at the link
http://foo.bar/hello.php?name=baz a user would get the response:

n The parameter name is reflected in the page, without any kind of sanitization

hello baz

http://foo.bar/hello.php?name=baz

Reflected XSS

n An attacker could then inject a <script> tag, with some php
n For example, once a user clicks on the link

n The page would execute the JavaScript code "alert(1)", and the user would
only see a pop-up with a 1

http://foo.bar/hello.php?name=<script>alert(1)</script>

Stored XSS
n Stored XSSs work in a similar way of the reflected XSSs
n They are an injection flaw too, but they don't require user interaction at all
n A stored XSS takes place when some data that is "stored" by the site is
reflected somewhere without any sanitization
n Stored means that it is saved in some way by the application, for example
inside a database

Stored XSS
n A typical example is the comment section of a blog:

• If the content of a comment is not sanitized before being outputted in the page, a rogue
user can inject JavaScript code

n Since the comment is saved in the database, every user that visits the page
with that comment is "attacked" by the malicious JavaScript code

Stored XSS
n This kind of injection doesn't require any user interaction at all, because the
attacker doesn't need to send a link to the victim
n The user just needs to wait until the victim visit the compromised page by
itself

Preventing XSS
n Reflected and Stored XSS are difficult to prevent:

• Even in a small web application, there are a lot of ways some user input can be output
• Different contexts require different sanitization methods

n As always, the general rule is to sanitize any unsafe data

Preventing XSS
n Generally, the sanitization is done by replacing every dangerous HTML
character with its HTML encoded version
n Dangerous characters are different by the point in which they are echoed on
the page, normally they are:

• < > "
n Once "HTML-encoded", they become:

• < > "

Preventing XSS
n Every language has its functions that do this kind of sanitization
n PHP for example uses htmlspecialchar

• https://www.php.net/manual/en/function.htmlspecialchars.php
n Using this kind of function can be dangerous:

• It is very likely to forget to call them when echoing some user-supplied data

https://www.php.net/manual/en/function.htmlspecialchars.php

Preventing XSS
n A less error-prone way to prevent XSS is to use templates
n Templates are documents that look-like the final page, with placeholders in
which unsafe data can be echoed in the page in a safe manner
n Since every output in which some user-input can be echoed is a placeholder,
the web application can sanitize everything by default

Preventing XSS

n For example, a template of the "hello" page would look like the following

n The "template engines", that is the program that renders the template, would
then substitute the user_name var with the sanitized user input, thus preventing
the XSS

<html>
<head>….</head><body>
Hello {{user_name}}
</body>
</html>

Excercise
http://xss1.challs.cyberchallenge.it/

Goal: get the admin cookie!

The cookie can be read with “document.cookie”

Cross-Site Request Forgery

CSRF

n Cross-Site Request Forgery (CSRF) is a type of attack that occurs when a
malicious Web site, email, blog, instant message, or program causes a user’s
Web browser to perform an unwanted action on a trusted site for which the
user is currently authenticated

CSRF
n Imagine a bank that lets users send money to other users
n One they start the transaction, a link the following is generated:

n An attacker could replace the "user2" with its account name, then send the
link to the victim
n If the victim clicks on the link, then the transaction

http://bank.site/transact?to=user2&money=1000

CSRF
n An attacker could replace user2 with its account name, then send the link to
the victim

n If the victim clicks on the link, then the transaction would start, sending
1000€ to attacker

http://bank.site/transact?to=attacker&money=1000

CSRF - Mitigations
n This happens because HTTP is stateless, and the server is not aware of the
site from which the link is accessed
n Prevention is simple:

• Make the request stateful

CSRF - Mitigations
n To make the request stateful there are a lot of ways
n The best way is to create a random token and save it in the session
n When the link that triggers an action is generated, the token is inserted
n The backend then checks if the provided token is the same as the one in the
session, and, if not the backend rejects the action

CSRF - Mitigations
n This works because of the SOP
n The only way an attacker could get a valid token, would be:

• To get the content of the page (and with SOP the attacker can't)
• To get the cookie/session (and the attacker can't)

CSRF - Mitigations

n Since 2018, most browsers implement the SameSite attribute for cookies
n The SameSite attribute governs the way a cookie is shared or not to a
certain site when visiting or loading assets from another location

CSRF - Mitigations
n The decision on sharing a cookie or not is based on the origin of the cookie,
with the concept of "parties"

• Same Party: The origin is the same
• First Party site: The origin differs only by the subdomain
• Third Party site: The origin is completely different

CSRF - Mitigations

https://foo.example.com/

https://foo.example.com/o
therpage.html

https://bar.example.com/ https://www.google.com/

Same Party
First Party

Third Party

CSRF - Mitigations
n To activate this mechanism, cookies use the flag "SameSite"
n This flag can have 3 different values:

• Strict: Share the cookie only with Same Site locations
• Lax: Share the cookie only with First Party locations (and same site)
• None: Share the cookie with every site

n Note that if the SameSite attribute is not set, by default, the browser treats
the cookie as lax

CSRF - Mitigations
n For example, let's say the site www.google.com has the cookie "foo" with the
SameSite attribute set to lax
n If www.example.com loads an image from www.google.com, the browser will
not send the cookie "foo" with the request, because www.example.com is a
third party site respectively to www.google.com
n This mechanism effectively prevents CSRF, because an attacker is not able
anymore to send authenticated requests to other origins

Excercise
http://shops.challs.olicyber.it/

Excercise
http://nflagt.challs.cyberchallenge.it/

