
File Disclosure

Outline
n File Disclosure

• Impact and Overview
• Paths 101
• Path traversal attacks
• Fixes

n Server-Side Request Forgery

File Disclosure
n A file disclosure is the impact of certain vulnerabilities
n As the name suggests, it consists of the ability to disclose/leak
important files from a server
n Because it is an impact, there are multiple classes of vulnerabilities
that lead to file disclosure

• For example, remote code execution is another type of vulnerability that could
results in a file disclosure

File Disclosure
n Files inside a server are critical information:

• In many applications, users-uploaded files are the sensitive information that the
application is protecting

• The disclosure of such files can be a violation of the site policy

File Disclosure
n It is also possible to steal configuration files from the webserver which
might contain critical information items

• Database configuration files often contain the credentials to access the database
• Files like the tomcat-users.xml contain the credentials to access the tomcat

manager
• Files like flask configuration or web.config in a .net application contain the secret

used to sign the session

File Disclosure
n Finally, it is possible to steal the source code of the web application

• For some business, the source code of the web application is its product/asset
• An attacker in possession the source code is more effective

• It is easier for the attacker to find other vulnerabilities, especially if the application
was developed according to a security by obscurity model

File Disclosure
n How can a web app disclose internal files?

• Basically, everything that works with files can lead to a file disclosure vulnerability
• There are standard sinks, and some of them are a trivial
• If a user-controlled input manages to go inside these sinks, the web app is at risk

File Disclosure
n Some sinks are trivial...

• Every function in every programming language that manages files
• Every flavor of open/fopen in every language
• Flask send_file
• …

n It is also possible to leak files if the web app suffers from code execution

File Disclosure
n Some sinks are trivial...

• Every function in every programming language that manages files
• Every flavor of open/fopen in every language
• Flask send_file
• …

n It is also possible to leak files if the web app suffers from code execution

File Disclosure
n Some sinks are trivial...

• Every function in every programming language that manages files
• Every flavor of open/fopen in every language
• Flask send_file
• …

n It is also possible to leak files if the web app suffers from code execution

File Disclosure
n Other sinks are less trivial

• cURL is used as a http client. But it can also be used to open files

File Disclosure
n It’s sometimes possible to leak important files just because they are publicly
accessible

• .git directory exposed
• If you make your git directory open to the internet, everyone will be able to dump all

files inside it
• Web-server misrouting

• It’s sometimes possible to trick a web server to return a .php file as an image...

Paths 101
n Let us focus on what happens if a user-controlled input finds a way to an
open-like function
n We first need to understand few things about how paths work

Paths 101
n An absolute path is a path that describes the location of a file regardless of
the working directory

/etc/passwd

n A relative path is a path that describes the location of a file starting from the
working directory

foo/bar

Paths 101
n Paths are composed by a dirname and a basename

• The dirname is the portion of the path up to the last /
• The basename is the portion of the path after the last /

BasenameDirname

/usr/bin/firefox

Paths 101
n Every directory has two special subdirectories:
• The current directory, whose name is .

• And the parent directory, whose name is ..

n The parent directory is useful for file disclosure because it permits to
access deeper directories inside the file system

/foobar/./ /foobar/

/foobar/../baz /baz

Paths 101
n A path in its shortest form is called normalized
n For example:

• /foo/bar is normalized, there is no way to make it shorter
• //foo/bar is not normalized, /foo/bar is shorter
• /foo/./bar is not normalized, /foo/bar is shorter

n What about /foo/test/../bar?

Paths 101
n What about /foo/test/../bar?
n Its shortest form would be /foo/bar, but what happens if /foo/test/ does
not exist?

• If the path is normalized before opened, then everything is fine: we can access /foo/bar
without any problem

• If the path is not normalized, then the open would fail because /foo/test/ does not exist,
and so ..

Path Traversal
n Path traversal is a vulnerability that leads to a file disclosure
n It happens when a user-controlled input finds its way into an open() or an
equivalent function
n If there are no security checks or security sanitizations, an attacker could
inject paths that are not meant to be opened

Path Traversal
n Few cases might happen:

• Plain injection open($input)
• Prepended injection open($input + '/foobar')
• Appended injection open('/foobar' + $input)
• Appended and prepended open('/foo'+$input+'/bar)

Exercise
http://basiclfi.challs.cyberchallenge.it/

Server-Side Request Forgery
n A Server-Side Request Forgery is a vulnerability that allows an attacker to
send a network request from the remote application

Server-Side Request Forgery
n The impact varies a lot, depending on the control the attacker has on the
forged request:

• Control over the whole TCP packet
• Control over some parts of an HTTP request
• Control only over the host/port to which the request is made
• …

Server-Side Request Forgery
n SSRFs are dangerous because they allow bypassing the firewall
n If the internal network is not properly designed, it is possible to access to
sensible hosts, like internal web applications and control panels

Server-Side Request Forgery
n If the vulnerable web application is hosted on a cloud instance, things
become more interesting
n Some instances have access to specials URLs that often contain critical
data

Server-Side Request Forgery
n For example, AWS instances can access the metadata API, at the URL
http://169.254.169.254/
n This host contains sensible information such as the IAM security
credentials and general information about the vulnerable instance

http://169.254.169.254/

Server-Side Request Forgery
n If there is no output, the SSRF is called blind SSRF
n It is less dangerous than a normal SSRFs
n With a blind SSRF it is possible to

• Map the internal network
• Trigger actions on hosts behind the firewall¹

1: A nice collection of payloads to use:
https://blog.assetnote.io/2021/01/13/blind-ssrf-chains/

Server-Side Request Forgery
n To find an SSRF, you should:

• Find suspicious endpoints: If you see a URL inside a parameter try to put a URL
controlled by you. You can use a tool like ngrok

• If you have a pingback at your host, then probably you have an SSRF. Then you should
try to insert internal hostnames, like "localhost" or common internal IPs
(192.168.1.1,10.0.0.1, and so on..)

• Examine the response time!

Server-Side Request Forgery
n Every piece of code that can issue a connection can lead to this vulnerability
n Common functions/libraries are:

• PHP open-like functions
• CURL
• Python's urllib
• ...

Server-Side Request Forgery

Server-Side Request Forgery
n Generally speaking, SSRFs are really difficult to avoid
n The most effective way is to check the user-supplied host against a whitelist
n Another good mitigation is to make requests from a host that is isolated
from sensitive internal hosts

Exercise
http://ssrf1.challs.cyberchallenge.it/

