File Disclosure

Outline

m File Disclosure
* Impact and Overview
* Paths 101
* Path traversal attacks
* Fixes

m Server-Side Request Forgery

File Disclosure

m Afile disclosure is the impact of certain vulnerabilities

m As the name suggests, it consists of the ability to disclose/leak
important files from a server

m Because it is an impact, there are multiple classes of vulnerabilities

that lead to file disclosure
* For example, remote code execution is another type of vulnerability that could
results in a file disclosure

File Disclosure

m Files inside a server are critical information:
* |In many applications, users-uploaded files are the sensitive information that the
application is protecting
* The disclosure of such files can be a violation of the site policy

File Disclosure

m It is also possible to steal configuration files from the webserver which

might contain critical information items
* Database configuration files often contain the credentials to access the database
* Files like the tomcat-users.xml contain the credentials to access the tomcat
manager
* Files like flask configuration or web.config in a .net application contain the secret
used to sign the session

File Disclosure

m Finally, it is possible to steal the source code of the web application
* For some business, the source code of the web application is its product/asset
* An attacker in possession the source code is more effective

* |tis easier for the attacker to find other vulnerabilities, especially if the application
was developed according to a security by obscurity model

File Disclosure

m How can a web app disclose internal files?
* Basically, everything that works with files can lead to a file disclosure vulnerability
* There are standard sinks, and some of them are a trivial
* |f a user-controlled input manages to go inside these sinks, the web app is at risk

File Disclosure

m Some sinks are trivial...
* Every function in every programming language that manages files

* Every flavor of open/fopen in every language
* Flask send_file

m tis aléb possible to leak files if the web app suffers from code execution

File Disclosure

m Some sinks are fopen
 Every function t’"”::e 3 files

* Every flavo gzopen
SplFlleOb]ecL >__construct

® FIaSk Send write to filesystem (partially in combination with resz
chgrp
chmod

m ltis also possﬂ:zhown om code execution
opy
file_put_contents

1chgrp

1chown

link

mkdir
move_uploaded_file
rename

rmdir

File Disclosure

m Some Sinks are ‘e.rite’
* Every function readlink es files

realpath
* Every flavoistat
gzfile
* Flask send readgzfile
getimagesize
s imagecreatefromgif
H 1| imagecreatefromjpeg H
m ltis also possib 2o ccele from code execution
imagecreatefromwbmp
imagecreatefromxbm
imagecreatefromxpm
ftp_put
ftp_nb_put
exif_read_data
read_exif_data
exif_thumbnail
exif_imagetype

File Disclosure

m Other sinks are less ftrivial
* cURL is used as a http client. But it can also be used to open files

$fd = curl_init('file:///etc/passwd’');

echo curl_exec(%$a);

File Disclosure

m |t's sometimes possible to leak important files just because they are publicly
accessible
e .git directory exposed

* If you make your git directory open to the internet, everyone will be able to dump all
files inside it
* Web-server misrouting
* |t's sometimes possible to trick a web server to return a .php file as an image...

Paths 101

m Let us focus on what happens if a user-controlled input finds a way to an
open-like function
m We first need to understand few things about how paths work

Paths 101

m An absolute path is a path that describes the location of a file regardless of
the working directory

/etc/passwd

m A relative path is a path that describes the location of a file starting from the

working directory
foo/bar

Paths 101

m Paths are composed by a dirname and a basename
* The dirname is the portion of the path up to the last /
* The basename is the portion of the path after the last /

/usr/bin/firefox

Dirname Basename

Paths 101

m Every directory has two special subdirectories:
* The current directory, whose name is .

/foobar/./ = /foobar/

* And the parent directory, whose name is ..

/foobar/../baz == /baz

m The parent directory is useful for file disclosure because it permits to
access deeper directories inside the file system

Paths 101

m A path in its shortest form is called normalized

m For example:
e /foo/bar is normalized, there is no way to make it shorter
* //foo/bar is not normalized, /foo/bar is shorter
* /foo/./bar is not normalized, /foo/bar is shorter

m \What about /foo/test/../bar?

Paths 101

m What about /foo/test/../bar?
m lIts shortest form would be /foo/bar, but what happens if /foo/test/ does

not exist?
* |f the path is normalized before opened, then everything is fine: we can access /foo/bar
without any problem
* |f the path is not normalized, then the open would fail because /foo/test/ does not exist,
and so ..

Path Traversal

m Path traversal is a vulnerability that leads to a file disclosure
m [t happ
equivalen
IRl stemplate = 'blue.php';

[EeWeEl if (isset($ COOKIE['TEMPLATE']))

$template = $ COOKIE['TEMPLATE'];

include ("/home/users/web/templates/" . $template);

an

uld

Path Traversal

m Few cases might happen:
* Plain injection
* Prepended injection
* Appended injection
* Appended and prepended

open($input)
open($input + '/foobar")
open('/foobar' + $input)
open('/foo'+$input+'/bar)

Exercise

http://basiclfi.challs.cyberchallenge.it/

Server-Side Request Forgery

m A Server-Side Request Forgery is a vulnerability that allows an attacker to
send a network request from the remote application

Server-Side Request Forgery

m The impact varies a lot, depending on the control the attacker has on the

forged request:
* Control over the whole TCP packet
* Control over some parts of an HTTP request
* Control only over the host/port to which the request is made

Server-Side Request Forgery

m SSRFs are dangerous because they allow bypassing the firewall
m [f the internal network is not properly designed, it is possible to access to
sensible hosts, like internal web applications and control panels

Server-Side Request Forgery

m |f the vulnerable web application is hosted on a cloud instance, things
become more interesting

m Some instances have access to specials URLs that often contain critical
data

Server-Side Request Forgery

m For example, AWS instances can access the metadata API, at the URL
http://169.254.169.254/

m This host contains sensible information such as the IAM security
credentials and general information about the vulnerable instance

http://169.254.169.254/

Server-Side Request Forgery

m [f there is no output, the SSRF is called blind SSRF
m |tis less dangerous than a normal SSRFs
m With a blind SSRF it is possible to

* Map the internal network
* Trigger actions on hosts behind the firewall’

1: A nice collection of payloads to use:
https://blog.assetnote.io/2021/01/13/blind-ssrf-chains/

Server-Side Request Forgery

m To find an SSRF, you should:
* Find suspicious endpoints: If you see a URL inside a parameter try to put a URL
controlled by you. You can use a tool like ngrok
* |If you have a pingback at your host, then probably you have an SSRF. Then you should
try to insert internal hostnames, like "localhost" or common internal IPs
(192.168.1.1,10.0.0.1, and so on..)
* Examine the response time!

Server-Side Request Forgery

m Every piece of code that can issue a connection can lead to this vulnerability

m Common functions/libraries are:

PHP open-like functions
CURL
Python's urllib

Server-Side Request Forgery

send email(request):
L[f":

recipients = request.GET['to'].split(',")
url = request.GET['url']
proto, server, path, query, frag = urlsplit(url)

if query: path += '7' + query
conn = HTTPConnection(server)
conn.request('GET"',path)
resp = conn.getresponse()

Server-Side Request Forgery

m Generally speaking, SSRFs are really difficult to avoid

m The most effective way is to check the user-supplied host against a whitelist
m Another good mitigation is to make requests from a host that is isolated
from sensitive internal hosts

Exercise

http://ssrf1.challs.cyberchallenge.it/

